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Guest Editorial

NETWORK BIOLOGY—AT THE FRONTIER

Living systems are character-
ized by intricate networks 
of interactions among tens 

of thousands of entities within 
cells and across extracellular 
milieus. The entities in these net-
works include such things as genes, 
proteins, and small molecules. The 
interactions describe relationships 
such as transcriptional regulation, 
posttranslational modification, and 
complex formation, among others.

Our understanding of phenomena like disease states, 
responses to toxins, and basic biological processes such as circa-
dian rhythms and cellular differentiation, hinges on our ability 
to characterize and make inferences about these networks. This 
challenge is daunting given that the processes defined by the 
networks are dynamic; the relevant entities and interactions 
in the networks vary across cell types and contexts; and our 
knowledge of the entities and interactions is incomplete even 
for the simplest, single-cell organisms. Nevertheless, substantial 
progress is being made in developing computational methods 
that augment our understanding of the biological networks 
underlying processes, responses and states of interest. As high-
lighted in this issue, computational network biology is rapidly 
advancing with innovations on several important fronts.

Addressing incompleteness. The gaps in our knowledge of 
intracellular networks are being partially filled in by novel 
technologies for more thoroughly identifying specific types 
of interactions such as the protein-protein interactions that 
are being detected in the BioPlex project at Harvard. An 
alternative strategy to handling incompleteness is to screen 
for genetic interactions using knockout or knockdown meth-
ods. Novel algorithms are being developed to make infer-
ences about how sets of gene products interact based on the 
results of these genetic-interaction screens.

Incorporating multiple types of interactions. Although useful 
inferences can sometimes be made by analyzing networks 
composed from a single type of interaction (e.g. protein-
protein interaction or gene co-expression), we can clearly 
gain higher fidelity representations of biological processes 
by constructing and reasoning with network models that 
incorporate multiple types of interactions.

Network descriptions of diseases and patients. Whereas 
early network models focused on routine processes in model 
organisms, recent research has demonstrated that network 

models can provide insight into diseases as varied as autism, 
breast cancer, Parkinson’s (described in this issue), and viral 
infections.1 Moreover, many of the algorithms that have 
been applied to intracellular networks can be applied to 
other types of networks, such as patient similarity networks 
in which the nodes represent patients and the edges repre-
sent phenotypic similarity.

Exploiting relationships among organisms and cell types. Gaps 
in our understanding of networks in one type of cell can often 
be alleviated by taking advantage of information from related 
cells.2 For example, the TransposeNet method described in this 
issue has aided in the characterization of relationships among 
Parkinson’s risk genes by mapping a relevant subnetwork from 
yeast onto an inferred human network. 

In addition to these avenues of research, there are other 
directions where we can expect to see significant innovations 
in the near future. One important challenge is to devise net-
work models that provide more expressive and faithful repre-
sentations of the underlying biology. Such models will incor-
porate representations of epigenetics, cellular compartments, 
spatial and transport relationships, intercellular interactions, 
and host-microbiome interactions, among other aspects. 
A second area that is ripe for further exploration entails 
approaches that specify how network responses change as a 
function of genetic variation and environmental exposures. 
Another promising area: algorithms for optimally selecting 
the most informative experiments to refine network models.3 
And a fourth key direction is devising network models that 
span multiple scales, from molecules to whole organisms and 
their microbiomes. Such network models hold the promise 
of capturing in substantial detail how patient-level descrip-
tors like symptoms and diseases are manifested all the way 
down to the molecular level, thus helping to drive advances 
in precision medicine.  
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BY KATHARINE MILLER

THE “LEARNING TO RUN” CHALLENGE: 

Engaging Data Scientists in Biomechanics 

Most of us take walking or running for granted. 
But injury or neurological disease can cause 
these basic skills to deteriorate to such a degree 

that they need to be re-learned. To better understand how 
the brain accomplishes such learning, Stanford University’s 
Mobilize Center challenged the research community to a 
competition: develop a controller (essentially a brain) that 

will allow a physiologically-based human model 
to navigate through a complex obstacle course 
as quickly as possible. At the December 2017 
Neural Information Processing Systems (NIPS) 
conference, winners of the “NIPS 2017: Learning 
to Run” challenge will be announced.

The nature of the challenge has drawn many 
participants who are more familiar with data sci-
ence concepts—such as reinforcement learning—
than they are with muscles and bones, says Łukasz 
Kidziński, PhD, the Mobilize Center postdoc-
toral student who co-organized the competition in 

collaboration with researchers at the University of California, 
Berkeley, and École polytechnique fédérale de Lausanne in 
Switzerland. “Because they come at the problem from a dif-
ferent field, they use other types of skills to find new ways to 
solve challenging biomechanical problems,” he says. 

For the competition, Kidziński says, “We gave people a 
model with muscles and bones and interactions and con-
straints of the human body, and they had to build a brain 
for this body.” This simplified lower body model, which 
consists of bones and 18 key muscles, was designed in 
OpenSim, the biomechanical simulation platform devel-
oped by Mobilize Center researchers. “Other experiments 

had shown that these are enough muscles to synthesize 
human-like gait,” Kidziński says. He and his colleagues also 
set some reasonable constraints on the model, such as limits 
on the forces that muscles can exert, and a requirement that 
the model can only go forward. In addition, they built a 
virtual obstacle course of spheres inserted into the ground. 
“Something you can trip on,” Kidziński says. The purpose 
was to make the models more generalizable and to see if 
the model can adapt just as a human would. Those who join 
the competition create their controllers in OpenSim, which 
Kidziński and his colleagues modified to include reinforce-
ment learning in a changeable environment. 

More than 400 people have joined the competition, which 
received over 1,500 submissions by early October—three 
weeks ahead of the deadline for the competition’s first round. 
For November, the top models from the first round have 
been given a new challenge—a change in muscle strength, for 
example, or the frequency of obstacles. The victor’s model will 
be the one that goes farthest in a set amount of time. 

While there are some cool prizes, most participants 
are in it for the learning and community recognition. The 
competition’s leaderboard shows a thumbnail video of the 
models in action. In early October, the top contestant was 
Jackie Tseng, a PhD candidate at Tunghai University in 
China. She says the most interesting part of the competi-
tion has been training her agents and watching them prog-
ress from falling down continually, to taking first steps, to 
crossing over an obstacle, and then to running—and earn-
ing a high score. Another competitor, Anton Pechenko, a 
research and development engineer at Yandex, in Moscow, 
agrees this is the fun part: “There are three things you can 

watch forever,” he says, “Fire, 
water, and your agent performing 
actions solving the problem.”

Tseng looks forward to the day 
when computer vision might be 
added to reinforcement learning 
systems such as this one, to allow 
agents to understand and adapt 
to more complex environments. 
For now, she says, “Though the 
half-humanoid model trained in 
the ‘Learning to Run’ challenge is 
still relatively simple, it is a quite 
important beginning in AI for 
biomechanics.” 
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IS CLINICAL GENOMICS TESTING WORTH IT?

Cost-effectiveness studies yield answers to the complex question 
of whether clinical genomics testing has value.

W hole-genome testing has now 
reached the long-anticipated 
“$1,000 genome” level; and 

more targeted genetic panels cost even 
less. But the costs associated with 
genomic testing don’t end with sequenc-
ing. Additional expenditures—for follow-
up testing or treatments—may far exceed 
the investment in sequencing itself. 

“I hear people say, ‘of course it’s cheaper 
and better to just sequence people up 
front: More information is better,’” says 
Kathryn Phillips, PhD, professor of 
clinical pharmacy at the University of 
California, San Francisco. “In fact, it might 
be better in some situations but not oth-
ers.” Phillips and others are trying to pin-
point the situations for which the health 
benefits of genomic testing outweigh the 
costs, using cost-effectiveness analyses.

It’s not a simple task: The inputs—such 
as the risks associated with a genetic 

variant and the possible benefits of test-
ing—are uncertain. Sequencing also 
provides information about many differ-
ent genes, and each variant will have a 
different cost-benefit ratio. “You can’t do 
a holistic view of the full benefit of these 
tests,” says Eman Biltaji, PhD, gradu-
ate research assistant at the University of 
Utah. “You can only do a study focusing 
on one piece of it and then another study 
focused on another piece of it.” Finally, 
patients’ preferences and behaviors com-
plicate things. For example, if a patient 
who gets a negative genetic test decides to 
forego routine disease screening as a result, 
that could be a hidden cost of testing. 

As payers (insurance companies and 
governmental insurers) weigh whether 
to cover the costs of testing or not, 
cost-effectiveness research may help 
provide some answers to the key ques-
tion: how to deliver the right service 

to the right patient at the right time. 
Cost-effectiveness analyses are revealing 
valuable benefits for certain patients, in 
the areas of rare pediatric disease, cancer, 
and pharmacogenomics. But the jury 
is still out as to whether whole exome 
or whole genome sequencing (WES or 
WGS) for healthy patients is worth it. 

Rare Diseases  
in Children:  
Test Early! 

Children affected by rare monogenic 
conditions often undergo an extended 
diagnostic odyssey during which they 
are poked, prodded, tested and hospital-
ized at great expense to their families 
and the healthcare system. A study of 
40 such patients published in Genetics 
in Medicine in January 2017 found that 
cost-effectiveness was maximized when 
patients were offered WES as soon as a 

problem was suspected. “If 
you find out what’s happen-
ing early in the diagnostic 
trajectory, it does allow you to 
influence management of the 
genetic disorder a lot more 
than if you’re provided with an 
answer a few years down the 
track,” says Zornitza Stark, 
MD, a clinical geneticist at 
Murdoch Children’s Research 
Institute in Melbourne, 
Australia, one of the lead 
researchers on the study. 

Another similar study 
of 150 pediatric neurology 
patients in the Netherlands 
also found early use of 
WES to be cost-effective; 
and a Canadian study of 
103 pediatric patients with 
suspected genetic disorders 
found that WGS provided a 

The cost of sequencing a human genome 

has dropped significantly since 2001 and 

has significantly outpaced Moore’s Law 

since 2008 with the advent of next-gen-

eration sequencing technology. Courtesy 

of NHGRI, https://www.genome.gov/

sequencingcostsdata/
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far higher diagnostic yield (41 percent) 
than a gene panel (24 percent) or WES 
(34 percent), suggesting that WGS may 
be cost-effective in this context as well. 

Studies like these have an impact 
because they can convince payers that 
genomic testing is worth reimbursing, 
Stark says. “Our state government has 
recently announced big money—$8 mil-
lion—for rare disease diagnosis so that 

we can provide this type of testing.” 
Stark is now interested in pushing for 

rapid testing in hopes of returning WES 
results in a few days rather than 4 to 6 
months. “It costs a lot more but potentially 
allows better decisions in ICUs (intensive 
care units) which are expensive places 
anyway.” A day in the ICU costs about 
$4,500, she says, while rapid testing costs 
about the same. But the costs still need to 
be studied to determine whether test-
ing actually makes a difference. “I think 
in the rare disease space, there’s been an 
assumption that it doesn’t really matter: 
These children are just considered incur-
able, untreatable. You’re just giving it a 
name,” she says. “That is sometimes true, 
but you’d be surprised by how much of 
an impact we’ve had on our patients. It 
has certainly exceeded our expectations.” 

Cancer:  
Testing the Right Genes 

at the Right Time
In the cancer arena, some gene 

panels assess patients’ risk of various 
cancers and others evaluate the genetic 
makeup of a specific tumor to deter-
mine the most effective treatment. 

“In the cancer risk space, the big 
question is this: ‘How big should the 
panels be?’” says David Veenstra, PhD, 
professor and associate director of the 
Pharmaceutical Outcomes Research 
and Policy Program at the University 
of Washington School of Pharmacy. 
“With more and more genes on the 
panels, payers become concerned that 
there might be things on there that don’t 
have strong evidence behind them—
i.e., that aren’t that pathogenic.” 

In one study of colorectal cancer, he and 
his colleagues found not only that includ-
ing highly penetrant colorectal cancer risk 
genes on a panel was cost effective, but also 
that including less penetrant genes added 
minimal additional cost and was there-
fore still cost-effective. They also found 
that testing relatives of colorectal cancer 
patients with highly penetrant patho-
genic variants was cost-effective for the 
relatives in quality-adjusted life years—a 
standard measure of health benefit. 

In the cancer treatment arena, the 
concerns are somewhat different. Finding 
the most effective treatment from the get-
go can make a huge difference to patients; 
and next-generation sequencing panels can 

help guide chemo-
therapy treatment 
decisions. For 
example, about 40 
percent of colorec-
tal cancer patients 
have mutations in 
the RAS gene and 
therefore do not 
respond to certain 
adjuvant chemo-
therapies that work 
well for those with-
out a RAS muta-
tion. “Doing a test 
up front means that 
you protect patients 
from unnecessary, 
harmful, expen-
sive treatments,” 
Biltaji says. “It’s 
much better to use 

Cost-Effectiveness 
of Genomics Testing

Stark and her colleagues compared the diagnostic 

trajectory and resulting diagnostic yield and costs per 

patient for 40 infants with monogenic disorders under 

four conditions including standard care (yield: 7 diag-

noses) and three other models: (1) WES as a last resort 

after exhausting all standard investigations, including 

planned gene tests (yield: 13 diagnoses); (2) WES replac-

ing some investigations, particularly gene sequencing 

tests, complex biochemical tests, and invasive tests, 

(yield: 25 diagnoses); and (3) WES replacing most inves-

tigations (yield: 25 total diagnoses). Model 3 was the 

most cost effective per diagnosis ($6003) while standard 

care was the least cost effective ($27,050). Reprinted by 

permission from Macmillan Publishers Ltd from Stark Z, 

Schofield D, et al., Prospective comparison of the cost-

effectiveness of clinical whole-exome sequencing with 

that of usual care overwhelmingly supports early use 

and reimbursement, Genet Med 19: 867-874 (2017).
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these treatments for the right patients.” 
But is it best to do a single gene test 

for the RAS mutation or a gene panel 
that provides information about other 
genes implicated in treatment response 
as well? Another challenge: Testing a 
tumor’s gene expression once isn’t enough 
because the tumor evolves, Biltaji notes. If 
it is difficult to get new tumor biopsies—
from the brain, for example—a patient 
might continue to be treated based on 
old, incorrect information. That would 
change the cost-effectiveness analysis.

Pharmacogenomics Panels:  
A Few Base Hits

Pharmacogenomic screening can 
reveal how a person’s genes affect his or 
her response to drugs, leading to safer 
prescribing and dosing. But the ques-
tion remains whether routine pharma-
cogenomics screening is cost effective. 

In a recent study of elderly patients 
taking three or more medications, Biltaji 
and her colleagues found that, compared 
with matched controls, screened patients 
had a lower rate of hospitalizations and 
ER visits—but higher outpatient vis-
its—during the ensuing four-month 
period. Overall, there was a cost saving in 
the genetic testing arm—but the dollar 
amount was small—$218 net savings per 
patient, including the cost of the test. 

“In the pharmacogenomics space, 
people have been looking for a home 
run example where we’ll be saving lives 
left and right and revolutionize medi-
cine,” Veenstra says. “But it’s not about 
that; it’s about a bunch of base hits.” 
In order to justify pharmacogenomic 
screening of healthy people gener-
ally, he says, “Panel testing will need to 
be in the hundreds of dollars …. And 
I think that’s where we are going.” 

Genome Testing  
of Healthy Folks:  

The Big Question Mark
Genetic panels and WES for people 

who are already ill is one thing. Whole 
genome sequencing or gene panels for 

otherwise healthy patients is another. 
“Usually tests are done for a particu-
lar reason,” Phillips says. “If you’re just 
fishing, then it’s a question of how to 
put a value on that.” There’s also the 
question of whether integrating genome 
tests into healthy patient treatment 
could lead to overuse—or possibly even 
underuse—of healthcare resources. 

“How do people who are ‘nega-
tive’ for risk genes behave?” wonders 
Veenstra. “Are they less likely to get 
a mammogram even though a nega-
tive BRCA finding doesn’t mean they 
are at lower risk for breast cancer? You 
want people to follow recommendations 
but not pursue health care consump-
tion behaviors that aren’t justified.” 

There’s also the question of how to 
handle incidental findings—i.e., the 
discovery of genetic variants that were 
not the target of the genetic test’s original 
goal. For example, if a person is tested 
for colorectal cancer treatment purposes, 
but the test reveals variants with other 
medical implications, should the patient 
be informed of these results? This issue 
rose to the fore a few years ago when the 
American College of Medical Genetics 
and Genomics (ACMG) recommended 
that clinical laboratories performing 
genomic testing should routinely report 
any incidental findings relevant to 56 
(at the time—now 59) genes considered 
actionable and having a high probability 
of causing disease. The recommendation 
was later revised to state that patients 
may opt out of receiving the findings. 

Prior to making the recommendation, 
the ACMG had not evaluated whether 
returning incidental findings to patients 
would be cost-effective. In work pub-
lished in Genetics in Medicine in 2014, 
Veenstra took on that challenge. He 
and his colleagues applied some clever 
strategies to determine that the return of 
incidental findings could prove cost effec-
tive for some patient populations. “Our 
work to date has shown that the report-
ing of incidental findings could be worth 
doing,” Veenstra says. “But we need better 

estimates of penetrance and how people 
behave when provided this information.” 

A group at Brigham and Women’s 
Hospital in Boston is trying to find 
the answer to that very question. 
As part of a large research project 
called MedSeq, Kurt Christensen, 
PhD, instructor in genetics and medi-
cine at Harvard Medical School, and his 
colleagues performed WGS on primary 
care patients at a cost of about $5,250 per 
patient. They then looked at whether the 
information gained led to higher health-
care expenditures in the ensuing six-
month period. Compared with untested 
patients, those with WGS results 
incurred about $350 more in health-
care costs during that time (a difference 
that was not statistically significant), 
Christensen says. The MedSeq team will 
continue to follow these patients long 
term. “Six months out is too soon to see 
the kinds of cost-savings you might see 
as a result of correct dosing or avoid-
ing adverse reactions to medicines, or 
detecting or preventing disease,” he says. 

But there are methodological chal-
lenges to this kind of cost-effectiveness 
research. “What are the right methods 
for capturing services linked to the 
genetic information so that we can 
distinguish what was ordered in response 
to sequencing as opposed to other 
conditions that might arise?” he asks.  

Knowing Enough to 
Make Good Decisions 

Ultimately, the value of genomic 
sequencing lies in how it affects clini-
cal practice. Veenstra predicts that in 
five to ten years, even run-of-the-mill 
healthcare systems will be considering 
screening untested populations for the 
ACMG and pharmacogenomic genes. 
And cancer gene testing is well underway 
in many healthcare settings. If the cost 
of WES and WGS continue to drop, 
perhaps they will become routine as well.

“The exciting part,” Veenstra says, 
“is that there’s a good chance these 
tests have good economic value.” 
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PROTEINS FOR EVERY OCCASION

Protein design ascends to new heights

Scientists are now able to design, in 
principle, almost any protein they 
want—a feat that was inconceivable 

just a few years ago. They are reengineer-
ing existing proteins found in nature, as 
well as constructing proteins from the 
ground up, atom by atom. 

Custom-designed proteins could mean 
new and better vaccines, drugs, and other 
therapeutics; precisely designed biosen-
sors; and catalysts capable of produc-
ing chemicals and pharmaceuticals in a 
more environmentally friendly manner.

Designed proteins may help solve 
many of the world’s biggest problems, 
says David Baker, PhD. As a profes-
sor of biochemistry at the University 
of Washington in Seattle, he’s been a 
pioneer in developing computational 
methods to build proteins from scratch, 
a process called de novo protein design.

Thanks to an improved understand-
ing of how proteins fold, as well as 
advances in computing and genomic 
technology, experts say the field is 
now at an inflection point, with prog-
ress developing faster than ever. 

“I’d like to think we can do most 
everything,” says William DeGrado, 
PhD, professor of pharmaceutical chem-
istry at the University of California, San 

Francisco. “And I’d like to think we can 
do a lot more than nature can do.” 

Designing a Protein
Scientists have understood the basic 

principles behind protein folding since 
the 1960s: Electrostatic forces between 
and among the amino acids in a protein 
sequence pinch the chain, folding it into 
its lowest energy state—a flexible 3-D 
structure that changes in response to other 
nearby molecules. Since then, progress 
toward understanding how proteins reach 

their 3-D structures has been steady, 
including the first de novo computational 
design of a protein nearly 20 years ago and 
many other protein design successes since. 

These days, researchers can fully model 
and create proteins from scratch using an 
advanced software package called Rosetta, 
developed by Baker’s lab. Rosetta users 
start with a desired protein structure and 
allow the program to fill in the details. 
Specifically, users first define a desired 
backbone shape—the arrangement of 
alternating amino and carboxyl groups 
that are part of each amino acid and that 
link together to form a polypeptide chain. 
The computer then calculates how well 
various side chains (which differ for each 
amino acid) fit around that backbone 

to produce the desired structure. “If you 
put a side chain in one position, that can 
dictate what’s on the neighboring posi-
tion so they nestle together,” says Brian 
Kuhlman, PhD, professor of biochemistry 
and biophysics at the University of North 
Carolina at Chapel Hill. Meanwhile, 
Rosetta ensures that the whole molecule 
is at its lowest, most stable, energy state. 

Yet most of the sequences that Rosetta 
comes up with for a particular structure 
won’t actually fold into a stable shape 
in the lab. And calculating backward to 
check whether the sequences do indeed 
generate the desired protein structure 
only gets you so far. To truly validate 
a sequence, one must synthesize the 
protein and test its stability. Until the 
advent of large-scale de novo approaches 
(see below), this required that proteins 
be designed and tested one at a time. 

Neanderthal Design: 
Tweaking Natural Proteins 
Most protein engineering to date 

has involved tweaking proteins found 
in nature to give them slightly different 
functions. Baker calls this Neanderthal 
protein design, similar to the strategy our 
primitive cousins would have employed—
fashioning tools out of what was already 
lying around—for example, chipping 
away at a rock or sharpening a stick. 

Baker’s team published an excit-
ing example of this strategy in Nature 
Biotechnology in June 2017: They designed 
a protein that prevents mice from getting 
the flu. They knew that the flu virus’s sur-
face contains a mushroom-shaped protein 
called hemagglutinin that enables the 
virus to infect cells by binding to a sugar 
molecule in the cell membrane. So they 
created a protein, dubbed flu glue, that can 
glom onto hemagglutinin, blocking it from 
infecting cells. It might not become medi-
cine for humans anytime soon, but could 

Custom-designed proteins could mean new and 
better vaccines, drugs, and other therapeutics; 

precisely designed biosensors; and catalysts capable 
of producing chemicals and pharmaceuticals in 

a more environmentally friendly manner.
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be used to develop a quick and 
easy way to diagnose the illness. 

A few years earlier, in 2011, 
Ingrid Swanson Pultz, PhD, 
translational investiga-
tor at the University of 
Washington, led the 
development of 
an enzyme called 
KumaMax that 
breaks down gluten. 
Since then, the molecule’s 
design has gone through further 
refinements to make it more effective. 
Pultz co-founded PVP Biologics, for 
which Baker serves as a scientific advisor, 
to further commercialize KumaMax in 
pill form. It might allow those with celiac 
disease to eat all the bread they want.

Kuhlman has been collaborating with 
the pharmaceutical company Eli Lilly to 

develop antibodies that can bind to two 
antigens at the same time, called bispe-
cific antibodies. These kinds of antibodies 
can, for example, bind to both a tumor 
cell and an immune cell, thereby 
recruiting the body’s immune sys-
tem to help fight cancer. The trick is 
making sure they don’t bind to other 
things in undesirable ways. In a 2016 
paper published in Structure, Kuhlman’s 
lab developed a strategy for predicting 
the specificity of bispecific antibodies. 

By designing proteins that bind to spe-
cific molecules, researchers can also make 
new types of biosensors. In work published 
in eLife in 2017, for example, Baker’s lab 
designed one that can signal the detec-
tion of the painkiller fentanyl. To test the 
sensor, the researchers incorporated it into 

a plant so the leaves turn color when it 
detects the molecule in question. This 
could ultimately lead to plants that 
can sense dangerous compounds.

In the future, Baker also wants 
to design proteins that can function 

like a rudimentary computer that does 
basic logic operations. This could lead 
to smart therapeutics such as designer 
proteins that can bind to a cell, deter-

mine whether it’s healthy or sick, 
and release or not release a drug. 

De Novo Design of 
Simple Proteins

Neanderthal design has its limits: 
When you start with protein back-

bones that were created through the 
evolutionary process, you miss out 
on a huge variety of options that 
nature never tried. By contrast, 

de novo design can explore the 
entire realm of possible protein 
backbones, some of which might 

have greater potential to prevent 
or treat disease than natural (or 

Neanderthal-designed) molecules 
such as antibodies or antibiotics.

For the most part, de novo 
efforts have been restricted 
to simpler proteins 
because more complex 
structures are beyond 
current computational 

capabilities. And research-
ers are still far from being 

able to design proteins with 
the same sophisticated func-

tions as those in nature. “The gap 
between what nature can do and what 

we can build is still very wide,” says 
Possu Huang, PhD, assistant professor 
of bioengineering at Stanford University. 

But simpler proteins can still 
be useful. Huang, for example, has 
designed a donut-shaped protein called 

Flu glue: (Right) A designer protein (brown and orange) fits snugly 

on top of the influenza virus’s hemagglutinin protein (green), which 

helps the virus latch onto and infect cells. (Below) Top view. Courtesy 

of Eva-Maria Strauch.
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a TIM barrel, which has potential as 
a biosensor and as a building block 
to construct larger molecules. And 
Baker’s group has designed smaller 
proteins that can fit together to form 
so-called nanocages, which can serve 
as containers to deliver drugs. 

Large Scale De Novo Design
The process of generating de novo 

protein designs took a huge leap in 
2017 with a pair of papers (one in 
Science and one in Nature) out of 
the Baker lab. They are noteworthy 
because they signal a new era of large-
scale, data-driven de novo design.

In the July 2017 Science paper, the 
Baker group used Rosetta to design 
15,000 mini-proteins. They then tested 
these proteins for stability using a novel 

high-throughput experimental approach. 
They engineered yeast cells that could 
encode the test proteins and ferry them 
to the cells’ outer surfaces; and they 
bathed these cells in protease, an enzyme 
that breaks down proteins, to measure 
how the proteins reacted—to determine 
if they folded into a stable shape. At first, 
very few did. But the team analyzed the 
winners and losers to discover new rules 
of protein folding and incorporate win-
ning features into the Rosetta pipeline. 
By the time they were done, their success 
rate for designing stable proteins had 
risen from 6 to 47 percent, and they 
had designed 2,788 novel proteins. 

Such large-scale methods enable 
researchers to more efficiently design 
the proteins they want. “It gives you 
a lot of shots on goal,” DeGrado says.  

But the effectiveness of the feedback 
loop is equally important and sug-
gests that machine learning could 
be used to better harness the lessons 
learned from large-scale testing—an 
approach Baker is now pursuing. 

In the October 2017 Nature paper, the 
Baker team added a new application to 
the large-scale strategy: drug design. They 
used de novo techniques to design and 
test 20,000 mini-protein drug candi-
dates for targeting viruses (such as flu) or 
toxins. When tested, their designs for flu 
successfully protected mice from infec-
tion. Unlike the Neanderthal-designed 
flu glue, these designs bind on the side of 
the hemagluttenin protein to block the 
virus from fusing with a cell. Moreover, 
the mini-binders are small, easy to make, 
more stable than antibodies, and don’t 

elicit much of an 
immune response 
(at least compared 
with modified nat-
ural proteins), sug-
gesting that they 
may have potential 
as an anti-flu 
therapeutic. 

Baker is 
optimistic. 
Neanderthal 
design is indeed 
useful today. But de 
novo design is still 
likely the future, 
he says. His lab has 
spawned a commu-
nity of hundreds of 
protein designers, 
including Huang 
and Kuhlman. 
“There’s just a 
lot of energy and 
momentum in this 
area now, with lots 
and lots of smart 
young people going 
into it,” Baker 
says. “The future 
is very bright.” 

Protein 
Design

Protein interface design methods have been used to create self-assembling, cyclic homo-oligomers (a), two-dimensional hexagonal lattices (b), various 

self-assembling cages (c-f) and one- or two-component assemblies with icosohedral symmetry and 60 (e) or 120 (f) subunits. Due to these de novo 

assemblies’ symmetry, they could be used for the presentation of antigens in vaccine applications as densely clustered antigens often lead to better 

immune responses. Also, the interior volumes of these cages are big enough to package cargo for delivery to targets. Reprinted with permission from 

MacMillan Publishers Ltd: Huang PS, Boyken SE, Baker D, The coming of age of de novo protein design, Nature 537, 320–327 (15 September 2016).
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BIG DATA FEEDS UNDERSTANDING OF OBESITY

How data about genes, physical activity, and the environment are yielding insights about obesity 

Despite extensive efforts, a clear 
understanding of the obesity epi-
demic remains elusive. Scientists 

have implicated specific causal genes (40 
to 60 percent of obesity is considered 
heritable); epigenetic effects (environmen-
tal changes to genes); and the microbiome 
(though this is controversial). Behavioral 
causes such as diet and exercise clearly 
matter, but behavior is hard to change; 
many people lose weight only to regain it, 
or begin an exercise regimen only to quit. 

With so many variables at play and no 
one-size-fits-all solution, some research-
ers are turning to big data. “Obesity lends 
itself well to big-data approaches that 
can bring out the real signals despite 
noise and heterogeneity,” says Elizabeth 
Speliotes, MD, PhD, MPH, associ-
ate professor of internal medicine and 
computational medicine & bioinformatics, 
University of Michigan Medical School.  

Big data is now beginning to cut 
through some of obesity’s opacity, includ-
ing clarifying roles played by genetics, 
physical activity, and the environment. 
But relating all of the different and 
complex variables will require more data 
and, in particular, more integrated data. 

Obesity and Genes
Body mass index (BMI—weight over 

height squared) is considered a useful way 
to measure overall obesity, while waist-
to-hip ratio (WHR) captures obesity 
that is centered in the abdomen. In two 
papers published simultaneously in Nature 
in 2015, Speliotes and her colleagues 
conducted genome-wide association meta-
analyses of BMI in nearly 340,000 people, 
and of WHR (adjusted for BMI) in nearly 
225,000 individuals. They found that a 
different set of gene variants predispose a 
person to a high BMI compared to those 
associated with a high WHR. The genes 
linked to high BMI were largely based 

in the nervous system whereas those 
linked to high WHR related to adipose 
differentiation—i.e., the development 
of fatty tissue. High WHR is also more 
closely linked to health-related complica-
tions such as diabetes and cardiovascular 
disease. “There may be a more protective 
effect of depositing the fat subcutane-
ously rather than in the belly,” Speliotes 
says. Researchers are currently 
exploring what the discovered 
genes do, how they do it, 
and how they are con-
nected to each other. 

Her team is also 
finding that the com-
plications of obesity 

don’t always follow from a predisposition 
to obesity. Other genes may sometimes 
intervene to provide either a protec-
tive or detrimental effect. With more 
and bigger datasets will come a better 
sense of how these interactions work, 
Speliotes says. “The combination of genes 
will be more and more predictive.”

Obesity and Physical Activity
Historically, most studies of physical 

activity and obesity were relatively small; 

relied on individuals’ self-reports, which 
aren’t entirely reliable; and reported the 
respondents’ average activity levels—
resulting in a further loss of information. 

Wearable activity monitors have 
changed all that. Sample sizes have blos-
somed and detailed information is abun-
dant. Researchers at Stanford University’s 

Mobilize Center recently analyzed 68 
million days of physical activity data for 
717,527 people in 111 countries collected 
from a smartphone fitness application 
(Azumio’s). The study, published in Nature 
in 2017, found that the disparity of physi-
cal activity distribution within a country, 
which they dubbed “activity inequality,” 
is a better predictor of a country’s obesity 
prevalence than average activity levels. 

“The activity inequality concept really 

Different genetic loci are associated 

with different measures of obesity, as 

shown in this Venn diagram, which 

identifies genetic loci associated with 

BMI, body fat percentage, waist-hip 

ratio adjusted for BMI (WHRadjBMI), 

visceral adipose tissue (VAT), subcuta-

neous adipose tissue (SAT), the VAT/SAT 

ratio and extremes of BMI and WHR. 

Reprinted with permission from Fall  

T, Mendelson M, Speliotes E, Recent 

Advances in Human Genetics and 

Epigenetics of Adiposity: Pathway to 

Precision Medicine? Gastroenterology 

152:7:1695-1706 (May 2017).
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Obesity
and Big Data

jumped out at us,” says Tim Althoff, 
a PhD candidate in computer science 
at Stanford University. When the team 
plotted individuals’ steps per day in each 
location or country, a routine calcula-
tion done just to look for outliers, he 
says, “some of these curves were much 
wider than others.” In Saudi Arabia, for 
example, there are fewer people on the 
low end of the norm, while in Japan, the 
curves are narrower with relatively few 
people walking way more or way less 
per day than typical. And the biggest 

revelation: “We found that in countries 
that are more unequal in activity, activity 
in females is reduced disproportionately.” 
When they modeled possible interven-
tions, it turned out that “if you just lifted 
women’s activity levels to the level of 
their male counterparts, you would cut 
activity inequality by half,” Althoff says. 

Activity data can also be connected 
to genetics. For example, Misa Graff, 
PhD, research assistant professor of 
epidemiology at the University of North 
Carolina Gillings School of Global 

Public Health, recently did a meta-
analysis of results from 60 genome-wide 
association studies (GWAS) covering 
more than 200,000 adults, looking at the 
interaction between obesity genes and 
physical activity. Although her data for 
physical activity was the old-fashioned 
self-reported kind, she did identify 
genes that are influenced by physical 
activity and, by controlling for physi-
cal activity, new obesity-related genes. 

Still, she says she’s “not very satisfied, 
actually…. We could find more if we had 
better measures of physical activity.” Graff 
would love to use data from smartphones 
to look at how active people really are and 
coordinate that with eating and sleeping 
habits. “Without data that is harmonized 
across individuals, you can’t get at a lot 
of the questions about genes,” she says. 

Obesity and  
the Environment

Big data could be useful in under-
standing obesity-environment connec-
tions at multiple scales: the epigenetic 
level (the ways that genes are turned on 
and off in response to environmental 
influences); the microbiome level; and 
even at the urban infrastructure level. 

When it comes to how the microbi-
ome and the epigenome affect obesity, the 

Stanford’s Mobilize Center researchers analyzed smart-

phone data from more than 68 million days of activity by 

more than 700,000 users of the Azumio fitness app. They 

discovered significant variability in mean daily steps 

by users in 111 countries across the world (figure 1a). 

Moreover, the distribution of steps varied by country, as 

shown in 1b and 1c for four representative countries. This 

observation led the researchers to define the concept of 

“activity inequality,” which proved to be a useful predic-

tor of obesity rates (figure 2a), especially among women 

(figure 2b and 2c). For both males (blue) and females 

(red), a larger number of steps recorded is associated 

with lower obesity, but for females, the prevalence of 

obesity increases more rapidly as step number decreases. 

Reprinted by permission from Macmillan Publishers Ltd: 

Althoff T, Sosič R, Hicks JL, King AC, Delp SL, & Leskovec 

J, Large-scale physical activity data reveal worldwide 

activity inequality, Nature 547, 336–339 (2017).

Figure 1

Figure 2
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jury is still out. In a recent meta-analysis 
of the gut microbiome, researchers at 
the University of Michigan found only a 
weak association between the microbial 
communities found in human feces and 
obesity status. And although epigenetic 
changes might influence obesity risk, 
the specifics are still unclear, Speliotes 
says. Moreover, she notes, obesity itself 
might have consequences for epigenetics. 
Indeed, in a 2017 Nature paper, an 
epigenome-wide association study of 
over 10,000 people found that BMI is 
associated with widespread changes in 
DNA methylation (a common epigenome 
marker), and that these changes predict 
future development of type 2 diabetes.  

On the infrastructure front, however, 
the evidence is clearer: Certain neighbor-
hood attributes—such as high poverty 
and crime, a lack of physical activity ame-
nities, and a lack of transportation and 
recreation infrastructure—are associated 
with lower physical activity and higher 
obesity. But Graff found that, in a cohort 
of nearly 8,000 adolescents, physical 
activity helped reduce BMI regardless of 
the neighborhood-level factors. “Genes 
influence the BMI at the given activity 
level regardless of where you live,” Graff 
says. While this result might seem unsur-
prising, it reinforces the value of higher 
levels of physical activity in obesogenic 
neighborhoods—a policy promoted by 

former first lady Michelle Obama. 
Althoff also considered infrastruc-

ture in his Nature paper. He and his 
colleagues found that physical activity 
levels were higher (and activity inequal-
ity was lower) in more walkable cities. 
However, their analysis cannot reveal 

whether or not a walkable city actually 
causes higher physical activity levels, only 
that the two are related. To get at the 
causality question, Althoff will look at 
people in his dataset who move between 
cities to see if activity and obesity status 
change in response to the walkability of 
the new location. In future work, Althoff 

also wants to look at food and nutri-
tion patterns using data from people 
who track that on their devices; as well 
as how weather or changes to a trans-
portation network affect activity levels. 
“Sensor-equipped smartphones and 
watches allow us to get into more detail 

regarding how physical activity changes 
with all kinds of factors,” he says.

The Big Data Difference
One-third of the world is now obese; 

consumer wearables are collecting activ-
ity and diet information globally; and 
genetic and genomic datasets are explod-

ing as well. Can all of these sources of 
big data converge to help us make sense 
of the various causes and potential solu-
tions to this complex condition called 
obesity? It remains to be seen, but these 
data sources are certainly feeding an 
insatiable appetite for understanding. 

Althoff and his colleagues found that higher walkability scores (from WalkScore.com) for 69 US cities are associ-

ated with lower activity inequality (a). Highly walkable cities show greater spikes in weekday walking during 

commute and lunch hours (b) as well as on weekends during daytime hours (c). Higher walkability is also associ-

ated with more daily steps across age, gender and BMI groups (d). Bars show the steps gained per day for each 

point increase in walkability score for 24 cities in the US. Reprinted by permission from Macmillan Publishers 

Ltd: Althoff T, Sosič R, Hicks JL, King AC, Delp SL, & Leskovec J,, Large-scale physical activity data reveal worldwide 

activity inequality, Nature 547, 336–339 (2017).

One-third of the world is now obese; consumer wearables are collecting activity 
and diet information globally; and genetic and genomic datasets are exploding as 

well. Can all of these sources of big data converge to help us make sense of the 
various causes and potential solutions to this complex condition called obesity?
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CAN BIG DATA STOP OPIOID ABUSE?
Armed with electronic health records and insurance claim information, data scientists are trying 

to predict who’s going to become addicted to opioids—and stop them before it’s too late. 

A person who is overdosing on 
opioids exhibits telltale signs: a 
limp body, slowed breathing and 

heart rate, and blueish or purplish finger-
nails and lips. But millions more who live 
with an opioid problem are harder to spot. 
They may be male or female, old or young, 
employed or homeless, lonely or part of a 
large supportive family. It’s often an invis-
ible problem until it’s too late. 

To identify those who are abusing 
opioids as well as those who are at risk, 
researchers are turning to datasets—includ-
ing electronic health records (EHRs), insur-

ance claims, statewide pharmacy databases, 
and emergency medical service calls. 

“The more knowledge we have and 
the more we can use automated tools 
to fight this, the better,” says Caleb 
Alexander, MD, co-director of the 
Johns Hopkins University Center for 
Drug Safety and Effectiveness. 

Indeed, data science could become an 
important weapon in the battle against the 
skyrocketing rates of opioid abuse in the 
United States. Though some opioids are 
street drugs, such as heroin, many people 
become addicted after being prescribed 

pain relievers that are considered safe 
in small doses and for a short period of 
time. But these drugs also cause a sense 
of euphoria that can lead people to crave 
them. As the cravings increase, prescrip-
tion users may end up taking opioids 
without a prescription or in a larger dose 
than prescribed. The epidemic has been 
linked not only to increasing deaths by 
overdose (according to the Centers for 
Disease Control, in the US roughly 100 
people die of an opioid overdose each day), 
but also to staggering medical costs, a rise 
in the number of children entering foster 

care, and even a shrinking labor force. 
It can be difficult for clinicians to 

identify addicts or other individuals at high 
risk of abusing opioids. Even armed with a 
thorough physical and mental health his-
tory, the most skilled doctor may miss the 
signs; and that’s where hard data comes in. 
Researchers are finding that information on 
when and where patients fill prescriptions, 
what doctors they visit, and where they live, 
among other factors, may reveal an addic-
tion or risk of overdose. Using data to flag 
these individuals may be one part of a much 
broader effort to slow the opioid epidemic. 

Calculating Risk from 
Claims and EHR Data

Thomas Ciesielski, MD, a doctor of 
internal medicine at Washington University 
School of Medicine, recently collaborated 
with Express Scripts, a pharmacy benefit 
manager, to determine whether they could 
predict opioid abuse or dependence using 
pharmacy and health insurance claims 
information. He and his colleagues ana-
lyzed de-identified data on nearly 700,000 
Express Scripts users and discovered 12 
patient characteristics that increased the 
odds of opioid abuse or dependence. The 
strongest predictors: chronic use of opioids, 
mental illness, alcohol and non-opioid 
substance abuse, younger relative age, and 
male gender. The work was published in 
the American Journal of Medicine in 2016.

“My hope in adding to this body of liter-
ature was to give clinicians a better under-
standing of the risk factors that a patient 
sitting in front of them has,” says Ciesielski. 
“If they have this information before they 
write a prescription, they can have more 
informed discussions with their patients.”

Joseph Boscarino, PhD, an epidemiol-
ogist and social psychologist at Geisinger 
Health in Danville, Pennsylvania, says 
that pinpointing a patient who may be 
addicted to opioids—based on EHR 
data—can be useful even after initial 
prescriptions are written. Boscarino 
and his colleagues recently discov-
ered that a patient’s healthcare costs 
often spike just before an overdose. 

“We found the signal by accident,” he 
says, pointing out that a spike in costs 
after an overdose—when a patient needs 
life-saving medical care and mental health 
support—would be more expected. When 
Boscarino and his team looked closer at 
their data—which included the electronic 
health records of more than 2,000 patients 
admitted to the hospital for an overdose 
between 2005 and 2015—they found other 

Higher opioid prescribing puts patients at risk for addiction and overdose. The wide variation among counties’ MME 

(morphine milligram equlvalents) per person (as shown on this map) suggests a lack of consistency among providers 

when prescribing opioids. SOURCE: Centers for Disease Control, Vital Signs, July 2017.
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risk factors associated with overdoses: 
being unmarried, unemployed, and taking 
other prescriptions along with opioids. 

“Now our health system is aware 
that we might be able to catch over-
doses by looking at this cost signal, 
especially if we know a patient is on all 
these other drugs,” says Boscarino. 

Moving Beyond the EHR
But while researchers like Ciesielski and 

Boscarino can find trends in their datasets, 
they also admit their limitations; the EHR 
or pharmacy claims datasets weren’t created 
with the goal of diagnosing opioid misuse. 

Ciesielski, for instance, suspected 
that the distance between a patient’s 
home and where they had a prescrip-
tion filled might be predictive of opioid 
misuse. “Patients driving further to get 
opioids might be doing it because they’re 
no longer able to get opioids in their 
own area,” he says. But the location data 
included in the Express Scripts dataset 
he studied only included zip codes—not 
the most precise way of calculating dis-
tance—and he found no clear association.

“Lots of information is just not in the 
EHR,” points out Boscarino. Because 
many EHR systems are not connected to 
one another, “I don’t know from the EHR 
whether a patient is also driving to another 
hospital system to get drugs,” he says. 

And studies are also plagued by the 
challenge of identifying opioid abus-
ers in the first place—information that’s 
needed in order to train a machine-
learning algorithm. Today, most studies 
rely on International Classification of 
Diseases (ICD) diagnostic codes, which 
can be found in medical charts and claims 
data. But doctors, even if they suspect a 
patient may be misusing opioids, don’t 
always put these codes for opioid abuse 
or dependence in the patient’s chart. 
Instead, they may simply stop treat-
ing the patient or order a lower dose of 
opioids without documenting why. 

Rather than relying on the ICD codes, 
Brandon Cosley, PhD, a researcher on 
the predictive analytics team at BlueCross 
BlueShield (BCBS) of Tennessee, says that 
they set a threshold for what is consid-
ered opioid abuse by looking directly at 
raw claims data in their possession.

“Our definition usually contains how 
much opioid has been prescribed, how 
many doctors someone has gotten pre-
scriptions from, and how many pharma-
cies they’ve filled the prescriptions at,” 
says Cosley. He parses patient claims data 
and demographics to find what other 
factors predict the elements of the defini-
tion. For several different subpopulations 
of BCBS Tennessee’s members, Cosley 
says he has developed models that predict 
opioid abuse with 80 percent accuracy. 

“We’re talking about hundreds of 
different risk factors for any given indi-
vidual, and they combine in many ways,” 
he says. “The relative contribution of 
any one risk factor may be small.”

Cosley has access to a more com-
plete dataset than researchers study-
ing single EHR systems, yet he 
says more data would be useful. 

“I think one of our most exciting initia-
tives is to really incorporate some of the 
free-form text data that we get from our 
membership,” Cosley says. “Things like 
nurses’ and doctors’ notes and customer 
service calls.” He says BCBS Tennessee 
has technology that allows them to 
start analyzing this kind of data and is 
working on ways to use it effectively.

Other researchers are also eyeing 
whether genetics data might help predict 
opioid abuse. A recent research effort led by 
researchers at Proove Biosciences, a preci-
sion medicine company based in Irvine, 
California, that is dedicated to optimizing 
the treatment of chronic pain, studied an 
algorithm—dubbed the Proove Opioid 
Risk (POR)—which used small varia-
tions in the genome, called single nucleo-
tide polymorphisms or SNPs, combined 
with clinical risk factors to predict opioid 
abuse. Patients in the highest category of 
POR scoring had 16 times greater odds 
of opioid use disorder. The work was 
published in 2017 in Pharmacogenomics 
and Personalized Medicine.

“I think in the future we’re going to 
have to do a better job linking EHRs to 
other assets including genetics,” Boscarino 
says. “Addiction is really complicated.”

Data-driven Interventions
Some communities are also crunch-

ing data to identify doctors or pharmacies 

that are part of the problem, or neigh-
borhoods that should be the focus 
of community-based interventions. 
Massachusetts, for instance, has used 
predictive analytics to allocate resources 
to neighborhoods with the biggest 
overdose rates. And Alleghany County, 
Pennsylvania, tracked overdose deaths in 
the county over a six-year timespan to 
pinpoint who was overdosing and when. 

If communities, hospital systems and 
insurance companies can start recogniz-
ing the patterns of opioid abuse in their 
computers, can they stop the opioid 
epidemic? Probably not, but they might 
help slow it, says Alexander, who in July 
2017 published a review in the Journal 
of the American Medical Informatics 
Association evaluating 15 algorithms 
that have been used to identify non-
medical opioid use in EHR data. 

“I don’t think anyone is naive enough 
to believe that automated tools alone will 
suffice,” he says. “But these tools can, in 
some cases, be used to simply raise aware-
ness and promote information sharing 
across clinical teams when a patient is 
at elevated risk for injury or death.”

The Geisinger pharmacy team, for 
instance, has started flagging opioid 
abuse risk factors in a patient’s EHR, 
based on Boscarino’s findings. This 
doesn’t mean a patient with risk factors 
won’t be able to get appropriate painkill-
ers, but it could mean that a clinician or 
pharmacist reconsiders dosing or limits 
how many pills a patient gets at a time.

Alexander notes that insurance com-
panies have a number of opportunities to 
improve patient care for those in pain while 
simultaneously reducing the overuse of 
prescription opioids. “Payers have a lot of 
tools in their toolbox, ranging from improv-
ing the coverage of non-drug treatments 
to designing new programs to identify 
and manage patients who are at highest 
risk of injury or overdose death,” he says. 

Data-science approaches to the opi-
oid epidemic also have limitations: “They 
have to be used carefully and for the right 
purposes,” Alexander says. “But they 
nevertheless can be quite powerful because 
they shine a light on potentially concern-
ing patterns and allow for the identifica-
tion of subpopulations who are at risk.” 
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To parents, 
 the symptoms of autism can seem to appear 

from out of the blue during a child’s first few years of life. But in recent years, 
researchers have shown that genes involved in the disorder likely affect 
neurodevelopment in the fetal brain. Among other implications, the results 
suggest that autism develops in utero, and is not due to exposures after birth.

To reach these conclusions, researchers 
needed more than the list of 65 strongly impli-
cated autism-associated genes identified by 
genetics researchers. They needed an understand-
ing of how the genes wire together into biologi-
cal pathways that manifest as autistic traits—an 
understanding that emerged from an approach 
called network biology. 

The story is similar for other complex diseases 
such as diabetes and Parkinson’s disease: Lists 
of disease-associated genes are growing rapidly 
thanks to advances in sequencing technology, and 
network biologists are manipulating those lists to 
identify the larger biological pathways that mal-
function in disease. 

Having the gene list is only the first step, says 
Trey Ideker, PhD, professor of medicine and 
bioengineering at the University of California, 
San Diego. It’s akin to having the parts list for 
an IKEA piece of furniture without the rest of 
the assembly manual. “Diseases involve networks 
of genes; and you have to map those networks if 
you’re going to understand those diseases,” says 
Ideker, whose network analysis tool, Cytoscape, 

has been cited more than 12,000 times. “What net-
work biologists are trying to do is apply systematic 
approaches to map this wiring diagram.” 

Network biologists draw graphs that are essen-
tially webs of biological relationships where the 
nodes are entities such as genes, proteins, or even 
patients, and the links between two nodes (called 
edges) represent specific interactions. For example, 
in a protein-protein interaction network, two pro-
teins are connected by an edge if they are known 
to physically interact. By applying statistical and 
mathematical algorithms to these graphs, scientists 
are able to gain insights—such as identifying sets 
of genes that work more closely with each other 
than with other genes in the network, and thus 
may participate in the same biological pathway. 

Network graphs often involve so many criss-
crossing edges that they are referred to as hair-
balls—an indication that they can seem, to the 
uninitiated, nearly impossible to interpret. Add to 
this the fact that “interactomes” change in differ-
ent cell types, tissues, and developmental phases, 
and you begin to get a picture of just how compli-
cated this field is. 

NETWORK  BIOLOGY: 
Converging on Answers       to Complex Diseases

Network image supplied under Creative Commons License, created by Keiichiro Ono, UC San Diego.
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“In terms of network biology, we’re 
approximately where genomics was in 
the late 1980s,” Ideker says. Still, there’s 
been considerable progress in recent 
years. Scientists have now mapped large-
scale—if incomplete—networks for 
numerous organisms including humans; 
and network approaches have been at 
the heart of recent breakthroughs in 
complex diseases, including autism. 

Stunningly, several autism research 
groups have used network biology to 
independently arrive at similar conclu-
sions. “What’s exciting is that multiple 
groups have used multiple different 
approaches to try and identify conver-
gence among the set of genes that have 
been implicated in autism, and they’re 
all coming up with very consistent 
findings,” says Jeremy Willsey, PhD, 
assistant professor of psychiatry at the 
University of California, San Francisco. 

Network biology encompasses a wide 
range of network types, including many 
based on physical interactions between 
and among cellular components (e.g., 
co-expression networks, genetic inter-
action networks, metabolic networks, 
protein-protein interaction networks, 
protein-DNA interaction networks, and 
protein-RNA interaction networks) as 
well as others based on similarity among 
patients or diseases. Each of these offers 
distinct biological clues that may help 
scientists transform their cellular parts 
list into insights about complex diseases. 
This article describes progress in a subset 
of these and looks at attempts to inte-
grate the different types of networks.

Co-expression 
Networks:  
Genes Working 
Together in Autism

In a co-expression network, genes are 
linked if their expression levels are highly 
correlated. “If genes are truly operating 
in the same pathways we would expect 
them to be turned on or off at the same 
time,” Willsey explains. Co-expression 
networks boast some of the earliest and 
most striking success stories in network 
biology, likely because the requisite 
data—microarray or mRNA-seq data—are 

relatively cheap to generate and read-
ily available from existing studies. 

In a 2013 paper in Cell, Willsey and 
colleagues leveraged co-expression net-
works to gain a foothold into the biology 
of autism. They identified nine high-con-
fidence autism risk genes (greater than 97 
percent chance of involvement) and 122 
probable autism genes (greater than 50 
percent chance of involvement). “We then 
asked the question: Is there a particular 
point in brain development and a particu-
lar region of the brain where the genes are 
most highly co-expressed, which may indi-
cate that this is a relevant point in devel-
opment for pathogenesis?” Willsey says. 

The team obtained genome-wide 
expression data from 13 developmental 
stages and four groups of human brain 
regions from the BrainSpan database. 
They created 52 co-expression networks by 
linking each of the nine high-confidence 
autism genes to its top-20 co-expression 
partners (out of nearly 17,000 genes) for 
a given developmental stage and brain 
region. They reasoned that if a particular 
network was relevant to autism it should 
be enriched in probable autism genes as 
well. Indeed, unexpectedly high num-
bers of probable autism genes popped 
up in two networks, both involved in 
mid-fetal development. “We can see 
that this enrichment is very specific 
to particular time periods and brain 
regions, namely mid-fetal development 
in the prefrontal cortex,” Willsey says. 

They further localized the relevant 
co-expression to glutamatergic neurons 
residing within deep layers of the pre-
frontal cortex. In separate work, their 
group and others have also consulted the 
gene ontology for clues about biologi-
cal function. “Every gene has a bunch 
of tags and we just looked for over-
representation of those tags,” Willsey 
says. Two key themes emerged: synapse 
biology and transcriptional regula-
tion. “This was a very exciting moment 
for the field because we were able to 
go from genes to a specific hypothesis 
about pathogenesis,” Willsey says. 

In the same issue of Cell, a second, 
independent group of researchers—led by 
Daniel Geschwind, MD, PhD, profes-
sor of neurology and of psychiatry and 

biobehavioral sciences at the University 
of California, Los Angeles—reported 
strikingly similar results. “They saw 
similar convergence in mid-fetal devel-
opment in the prefrontal cortex. They 
also observed enrichment in the same 
glutamatergic neurons,” Willsey says. 

Geschwind’s team first built co-
expression networks that were agnostic to 
autism risk genes: They used BrainSpan 
data to discover 12 “co-expression 
modules”—waves of highly co-expressed 
genes—that characterize normal fetal 
and infant brain development. They 
then looked for enrichment of suspected 
autism genes within these modules. 
Autism genes were over-represented in 
two modules involved in transcriptional 
regulation and three modules involved 
in synapse formation during fetal devel-
opment. And the genes were highly 
expressed in glutamatergic neurons in the 
prefrontal cortex. A separate set of risk 
genes for intellectual disability were not 
enriched in any of the 12 co-expression 
modules, suggesting that autism is biolog-
ically distinct from intellectual disability. 

“I think for the field it was very nice 
to see two different approaches come 
to a very similar conclusion in terms of 
pathogenesis,” Willsey says. Other groups 
have since arrived at similar conclu-
sions using network biology approaches. 
“For me that’s particularly exciting, 
because historically in psychiatric dis-
orders there has been a lack of agree-
ment in the field about a lot of differ-
ent aspects of biology,” Willsey says. 

Co-expression networks can also be 
used to implicate additional disease genes. 
“We can improve gene discovery by essen-
tially using a guilt-by-association method,” 
Willsey says. His collaborators at Carnegie 
Mellon University (Kathryn Roeder, 
PhD) and University of Pittsburgh 
(Bernie Devlin, PhD) developed an 
algorithm, Detecting Association with 
Networks (DAWN), that identifies hot 
spots within co-expression networks—
areas where multiple autism risk genes 
cluster together. Genes that reside in these 
hot zones are automatically suspect, even 
if they’ve never been implicated before. 
“Genes that may not have had enough 
genetic evidence for association get their 
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scores strengthened if they’re highly co-
expressed with strongly associated genes,” 
Willsey says. DAWN could be applied to 
other complex diseases as well, he says. 

Genetic Interaction 
Networks:  
Interacting Double 
Mutants in Cancer and 
Parkinson’s Disease 

In a genetic interaction network, two 
genes are linked if a mutation in one alters 
the effect of a mutation in the other. For 
example, mutating a gene in either the 
BRCA DNA repair pathway (a pathway 
implicated in breast cancer) or the PARP 
DNA repair pathway alone is insuffi-
cient to kill the cell; but hitting both at 
once is lethal. The cancer drug olaparib 
exploits this so-called “synthetic lethal-
ity” by disabling the PARP pathway in 
cancer cells that already have a BRCA 
mutation. Mapping genetic interaction 
networks is costly and time consuming, 
so we can’t yet approach genome-wide 
coverage. “Currently it’s about 100 genes 
that are able to be interrogated by mere 
mortals,” Ideker says. But genetic interac-
tion networks offer more immediately 
actionable insights than co-expression 
networks, such as suggesting novel drug 
targets. So Ideker set out to make the 
process cheaper and less time consuming.

In a 2017 paper in Nature Methods, 
Ideker’s team introduced “combinatorial 
CRISPR-Cas9” for genetic interaction 
mapping: They used the gene-editing 
tool CRISPR-Cas9 to knock out single 
and pairs of genes in high throughput. 
As a proof of principle, they systemati-
cally mutated 73 cancer genes—tumor 
suppressor genes and cancer-relevant 
drug targets—one at a time and in all 
pair-wise combinations in three human 
cancer cell lines: cervical, lung, and 
kidney. Two genes interact if their double 
mutant grows faster or slower than 
their single mutants would predict. 

Ideker’s team identified numerous 
interactions, including 152 synthetic-
lethal combinations. Most of these 
were novel, though some were already 
known; for example, they rediscovered 
the BRAC-PARP lethality targeted 

by olaparib. When they tested eight 
novel synthetic-lethal combinations by 
simultaneously drugging both genes, 
six were experimentally validated. 

 “Ultimately you’d love to be able to 
take all 30,000 genes and look at how 
twiddling all pairs of 30,000 genes 
affects the function of cells. But that’s 
still too big of an experiment to do, at 
least with our current state of technol-
ogy,” Ideker says. But, he says, “What’s 
nice about these CRISPR studies is that 
the speed and coverage of that interac-
tion map is directly coupled to the speed 
and cost of DNA sequencing. So, if that 
continues to fall, then it’s going to pull 
the interaction mapping along with it.”

Besides experimental advances, 
computational advances are also help-
ing scientists make headway in genetic 
interaction mapping. For example, a new 
algorithm called TransposeNet, introduced 
in a 2017 paper in Cell Systems, leverages 
network information from model organ-
isms such as yeast to help build human 
networks. TransposeNet was devel-
oped by Vikram Khurana, MD, PhD, 

assistant professor of neurology at Harvard 
Medical School and principal faculty at 
the Harvard Stem Cell Institute, work-
ing with a team of computational biolo-
gists led by Bonnie Berger, PhD, Simons 
Professor of Applied Mathematics and 
Computer Science at MIT, and including 
Jian Peng, PhD (a postdoc at the time). 

Khurana studies neurodegenera-
tive disorders in yeast cells and neurons 
derived from patient stem cells. Yeast may 
not have brains, but they exhibit criti-
cal eukaryotic biology found in special-
ized cells like neurons, especially when it 
comes to ancient problems like protein 
misfolding. In Parkinson’s disease, for 
example, the protein α-synuclein forms 
clumps (called Lewy bodies) in dopa-
mine neurons. If yeast cells are forced to 
express α-synuclein—which is not native 
to yeast—the protein forms toxic clumps 
similar to those found in Parkinson’s dis-
ease. Berger and Khurana’s team screened 
the entire yeast genome to identify genes 
that interact with α-synuclein, either 
ratcheting up or ratcheting down its 
toxicity. They came up with 332 genes, 

Cancer Network. By creating double-knockout mutants, researchers were able to identify genetic interaction 

networks involved in cancer. The green circles represent protein complexes; the orange circles are genes in those 

complexes. Blue lines indicate negative genetic interactions and yellow lines indicate positive genetic interactions. 

Reprinted with permission from: Shen JP, Zhao D, Sasik R, Luebeck J, Birmingham A, Bojorquez-Gomez A, Licon K, 

Klepper K, Pekin D, Beckett AN, Sanchez KS. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic 

interactions. Nature Methods 14:573-6 (2017).
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which they then assembled into a biologi-
cal network. Because the yeast genome 
has been so well studied, they were 
able to connect genes based on mul-
tiple types of relationships—including 
genetic interactions and physical ones (for 
example, protein-protein interactions). 

Berger and Khurana then created a 
“humanized” version of this yeast net-
work using TransposeNet. If you simply 
convert the 332 yeast genes to human 
genes using homology mapping, “you fall 
flat on your face,” Khurana says, because 
there is a dearth of available informa-
tion about how the human genes interact. 
TransposeNet solves this issue by using the 
wiring diagram from yeast to help fill in 
the wiring diagram for humans. “What we 
said is if those interactions are conserved 
and we don’t have any of those interac-
tions in humans yet, why don’t we use 
our yeast-to-human algorithm to not just 
convert a list of yeast genes into a list of 
human genes, but actually take the entire 
genetic network in yeast and convert that 
into the human proteomic 
space?” Khurana explains. 

 TransposeNet relies heavily 
on the SteinerNet algorithm 
developed by Ernest Fraenkel, 
PhD, professor of biologi-
cal engineering at MIT. This 
algorithm optimizes network 
building by prioritizing the 
most relevant interactions, 
including pulling in new 
genes if needed. “We used his 
algorithm to not just make a 
network between genes that 
were already in our list but 
actually to be able to add genes 
in, especially if it solves the 
network in the most efficient 
way possible,” Khurana says.

Remarkably, TransposeNet 
pulled into the network 
many known Parkinson’s risk 
genes that don’t have homo-
logs in yeast, including the 
gene for α-synuclein itself. 
“It was really cool that the 
algorithm was able to reintro-
duce the protein of interest 
and other human proteins 
that are critically important 

for Parkinson’s disease; we never told 
the network to do that,” Khurana says. 

Not surprisingly, the human net-
work was enriched for genes involved 
in protein trafficking, which is known 
to go awry in Parkinson’s. Unexpectedly, 
the network was also enriched for RNA 
binding proteins, which have previously 
been implicated in ALS but never in 
Parkinson’s disease. RNA binding proteins 
orchestrate protein translation. “We’re 
very excited about uncovering this new 
axis of biology,” Khurana says. Indeed, 
when Khurana’s team grew neurons in 
a dish from Parkinson’s disease patients 
with α-synuclein mutations, they found 
that the neurons had abnormally low 
protein translation. Moreover, they could 
reverse this defect by increasing the 
expression of two genes found to suppress 
α-synuclein in the original yeast screen. 

 “Vik Khurana validated these find-
ings in human stem cells, which is 
unbelievable,” Berger says. “It was a real 
joint effort between the computational 

biologists, the biologists, and physi-
cians, which I think is really nice. This is 
how we’re going to get the best transla-
tion to therapeutics in my opinion.” 

The network is also being used 
to discover new Parkinson’s disease 
risk genes. “We believe that there are 
absolutely going to be additional genes 
in our network that are contributing 
to or causing disease,” Khurana says. 
They are now sequencing exomes from 
patients with Parkinson’s disease to 
look for mutations in network genes. 

Protein-Protein 
Interaction Networks: 
Proteins Teaming Up 
in Parkinson’s Disease

Two proteins that physically interact 
likely participate in the same biologi-
cal pathway, so mapping protein-protein 
interactions can give direct insights into 
disease. Technological advancements are 
increasing the pace of mapping; and scien-

tists are approaching genome-
wide coverage in at least one 
human cell at one time point. 

One of the largest efforts 
to map the human protein 
interactome is BioPlex, led 
by Wade Harper, PhD, and 
Steve Gygi, PhD, professors 
of cell biology at Harvard 
Medical School. Harper and 
Gygi have developed a high-
throughput pipeline that uses 
affinity purification-mass 
spectrometry (AP-MS). In 
AP-MS, scientists insert an 
affinity tag into their protein of 
interest. This tag then binds to 
a matching bead, with which 
the protein can be fished out 
of a cell along with all its 
binding partners—which are 
then identified by mass spec-
trometry. Although AP-MS 
can enrich for the protein of 
interest and its interacting 
partners, there are also back-
ground proteins that associate 
non-specifically with affinity 
beads and often dominate the 
proteins identified by mass 

Parkinson’s Disease Network. Researchers identified genetic modifiers of the 

Parkinson’s Disease gene α-synuclein in yeast, and then used the program 

TransposeNet to generate a “humanized” network. Genes related to neurodegenera-

tive diseases are enlarged. Red triangles are the original yeast hits; dark blue circles 

are human homologs of yeast hits; and light blue circles are predicted human genes. 

Genes are connected if they have a known genetic or physical interaction. Reprinted 

with permission from: Khurana V, Peng J, Chung CY, Auluck PK, Fanning S, Tardiff DF, 

Bartels T, Koeva M, Eichhorn SW, Benyamini H, Lou Y. Genome-scale networks link 

neurodegenerative disease genes to α-synuclein through specific molecular pathways. 

Cell Systems. 2017;4:157-70.
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spectrometry. So, the Harper and Gygi 
groups developed software, CompPASS-
Plus, that uses a naive Bayes classifier to 
help distinguish high-confidence interact-
ing partners from background interactions.

Working at a rate of about 500 pro-
teins per month, this group has now 
mapped about 10,000 proteins and 
120,000 interactions from one human 
cell line. They have released data for 
about 7,500 proteins and 50,000 interac-
tions in BioPlex 2.0 (http://bioplex.hms.
harvard.edu), which was described in a 
2017 paper in Nature. People are already 
using the data, Harper says. “There are 
several examples where people have taken 
the network, identified novel interactions, 
and then made a biological discovery.” 

Membrane proteins represent a chal-
lenge for high-throughput approaches, 
as individual complexes require different 
detergents for proper extraction. Thus, 
for membrane proteins, the Harper/
Gygi team is turning to a new technol-
ogy called APEX, developed by Alice 
Ting, PhD, professor of genetics, biol-
ogy, and chemistry at Stanford University. 
Scientists insert an APEX tag into their 
protein of interest; when activated, APEX 
“spray paints” everything in the immedi-
ate vicinity (within a few nanometers) 
with biotin, a small molecule that is 
widely used to couple proteins, Ting 
says. These biotin-labeled proteins can be 
pulled out of the cell with high specific-
ity, reducing false positives. Since the 
protein complex doesn’t have to remain 
intact, this also reduces false negatives. 

Another advantage of APEX is that it 

can be used to resolve protein interaction 
networks in space and time. “People tend 
to view protein complexes as static entities, 
but, in reality, they’re not,” Harper says. 
APEX is incredibly quick—labeling takes 
as little as 20 seconds—making it pos-
sible to map protein-protein interactions 
dynamically. “With APEX, you can moni-
tor the changes in interaction partners over 
the time course of a biological process, and 
get a dynamic picture of what’s going on,” 
Harper says. For example, in a 2017 paper 
in Cell, Gygi and colleagues used APEX to 
map the rapidly changing protein inter-
action networks of G-protein-coupled 
receptors following ligand binding. 

APEX was central to a second paper 
that Khurana and colleagues published 
in Cell Systems in 2017 in which they 
revealed α-synuclein’s protein interaction 
network (the paper was published as a 
companion paper to the genetic interac-
tion paper). Using APEX, they detected 
225 proteins that reside in tight proximity 
to α-synuclein in rat neurons. Remarkably, 
the resulting protein interaction net-
work converged on the same Parkinson’s 

risk genes and cellular processes as the 
genetic interaction network created by 
TransposeNet. Both highlighted protein 
trafficking and RNA binding proteins. 
“One of the really cool things is that 
the core proteins that had originated in 
yeast in that other paper were actually 
interacting with α-synuclein,” Khurana 
says. “So there was this deep relation-
ship between where these proteins are 
in a cell and the mechanisms through 
which they exert their toxic effects.”

Patient Similarity 
Networks: 
Connecting Shared 
Phenotypes in 
Diabetes and Cancer

Biological networks aren’t limited to 
the molecular level. Researchers are also 
building networks at the patient and 
disease levels. In a patient similarity net-
work, two patients are linked if they share 
phenotypic similarities. Patient similarity 
networks can reveal subtypes of disease 
with similar biological underpinnings, 

Diabetes Network. A patient-patient similarity network 

of 2551 diabetes patients reveals three subtypes of dis-

ease. Researchers used data from the electronic medical 

records to build the network. Patients (nodes) are con-

nected if they exhibit similarity across many clinical 

dimensions (for example, laboratory tests). Patients who 

exhibited very high degrees of similarity were grouped 

into single nodes. Colors correspond to gender—with 

red shades indicating more females and blue shades 

indicating more males. From: Li L, Cheng WY, Glicksberg 

BS, Gottesman O, Tamler R, Chen R, Bottinger EP, Dudley 

JT. Identification of type 2 diabetes subgroups through 

topological analysis of patient similarity. Science 

Translational Medicine. 2015;7: 311ra174-311ra174. 

Reprinted with permission from AAAS.
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which may lead to tailored treatments. 
In a 2015 paper in Science Translational 

Medicine, researchers from the Icahn 
School of Medicine at Mount Sinai used 
patient similarity networks to identify 
three subtypes of type II diabetes. Joel 
Dudley, PhD, associate professor of 
genetics and genomic sciences at Icahn, 
and his colleagues culled 73 objective 
clinical measures—such as height, weight, 
and blood panels—from the electronic 
medical records of 2,551 diabetes patients. 
They used a dimensionality reduction 
technique to compress these 73 variables 
into a more succinct representation; and 
then clustered patients based on similarity. 

The resulting network had three 
distinct clusters of patients, which the 
researchers then attempted to character-
ize. They compared the clusters’ clinical 
characteristics, as well as their comorbidi-
ties and genotypes—factors held out of 
network building. Patients in subtype 
one were characterized by classic type 
II diabetes features—including obesity, 
high blood sugar, and kidney and eye 
disease. Patients in subtype two were 
thinner, had more cancer and cardiovas-
cular disease, and had polymorphisms 
in immune genes. “I call them skinny 
immune diabetics,” Dudley says. “They 
appear to have an immune- or inflam-
matory-driven diabetes that differs from 
the classical metabolic dysfunction.” 
Patients in subtype three had high levels 
of mental illness as well as cardiovascu-
lar disease. Psychiatric medications are 

known to increase the risk of diabetes, 
and could partly explain this subtype. 

When Dudley presented these data to 
physicians, the subtypes resonated with 
them. “Hindsight’s 20-20, but when we 
showed them this they were like ‘Oh, I 
know that type of patient,’” Dudley says. 

“They said it over and over again.” 
One limitation is that the data capture 

just one snapshot in time. “I think a lot 
of the networks we’ve built today are just 
glimpses into the real networks in our 
bodies,” Dudley says. To get a fuller pic-
ture, Dudley’s team is working on building 
networks using longitudinal patient data. 
“What’s becoming clear is that networks 
are super dynamic, super ephemeral. 
And we need lots of different perturba-
tions to really understand the actual logic 
and topology of the networks,” he says. 

When building patient similarity 
networks, most scientists cluster patients 
first and then look at the underlying 
characteristics of the clusters. But Teresa 
Przytycka, PhD, a senior investigator in 
the Computational Biology Branch of 
the National Center for Biotechnology 
Information at the NIH, has taken a dif-
ferent tactic. Her team uses a probabilistic 
algorithm that builds the patient network 
using phenotypic similarity data (e.g., gene 
expression or survival data) and genetic 
features (e.g., single-nucleotide polymor-
phisms or copy-number variations) simul-
taneously. This way, patients are not forced 
into a single subtype but are allowed to 
reflect a mixture of subtypes. 

The algorithm borrows 
from topic model-
ing approaches 

in text mining. Topic modeling attempts 
to classify documents into overarching 
topics—say sports, politics, culture, and 
science—by analyzing the set of words in 
each document. Similarly, Przytycka’s team 
attempts to classify patients into subtypes 
by analyzing the set of genetic perturba-
tions in each patient. Just as a document 
may be classified as both politics and 
science, a patient may also be classified 
as a mix of subtypes. “This is an example 
of taking a method from one field and 
applying it to another field. We can take 
software that experts have been work-
ing on for years and then repurpose it for 
molecular biology questions,” Przytycka 
says. When applied to glioblastoma, her 
team found that the disease has only three, 
not four, subtypes; what had previously 
been deemed a fourth subtype was in fact 
just a mixture of two other subtypes. 

Integrated Networks: 
The Big Prize

In isolation, each network type gives just 
one piece of the puzzle. The “big prize” in 
network biology will be to integrate them, 
says Ruedi Aebersold, PhD, professor 

Trans-omic Network. Researchers created an integrated network 

using five layers of network data—genetic, expression, protein, met-

abolic, and phenotypic—pertaining to fat metabolism in mice. The 

combined analysis of all layers together provides additional infor-

mation not yielded by any single omics approach. From Williams 

EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, Houten SM, 

Amariuta T, Wolski W, Zamboni N, Aebersold R. Systems proteomics 

of liver mitochondria function. Science. 2016;352(6291):aad0189. 

Reprinted with permission from AAAS.
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of systems biology in the department 
of biology at Swiss Federal Institute of 
Technology in Zurich (ETH Zurich). 
“They’re all views on the same cell from 
a different angle, so we’d like to be able 
to integrate various types of networks 
into a more global model.” It’s an enor-
mous challenge; and solving it will require 
computational biologists and experimen-
tal biologists to work together, he says. 

In a paper in Science in 2016, 
Aebersold’s team (in collaboration with 
the group of Johan Auwerx, MD, PhD, 
from Ecole polytechnique fédérale de 
Lausanne [EPFL]) presented an analytic 
pipeline to measure and combine five 
layers of network data—genetic, expres-
sion, metabolic, protein, and phenotypic. 
They measured about 25,000 transcripts, 
2600 proteins, and 1000 metabolites from 
40 different strains of mice with well-
characterized genetics. The project team 
fed the mice a high-fat or low-fat diet; 
and then measured phenotypic responses 
such as weight change, glucose tolerance, 
and the presence of fatty liver disease. The 

researchers then correlated elements across 
different network types. For example, they 
measured the correlation between a gene’s 
RNA expression level and the levels of the 
protein translated from that RNA—and 
surprisingly, these weren’t always tightly 
linked. They assembled all the data into 
a single network where the nodes were 
genes, transcripts, proteins, metabolites, 
or phenotypes, and the edges were the 
correlations between these. The resulting 
network gave novel insights into the role 
several proteins play in metabolizing fat.

With Peng, Berger has also built a 
computational pipeline for combin-
ing networks called MashUp (http://
mashup.csail.mit.edu). The connectiv-
ity pattern of each node in a network 
is incredibly complicated—but this 
information can be compressed into a 
simpler representation in the same way 
that Google’s PageRank condenses a 
website’s connectivity patterns into a 
simple ranking. MashUp extracts this 
information from multiple networks for 
each gene and then integrates it into 

one measure of global connectivity that 
informs how the gene relates to other 
genes in the networks. “We generate 
compact representations for the topol-
ogy of each node in its network and then 
integrate that using off-the-shelf machine 
learning methods,” Berger explains. 

In a 2016 paper in Cell Systems, 
Berger’s team showed that informa-
tion extracted and combined with 
MashUp can be used for tasks such 
as automated gene function annota-
tion with substantial improvements 
over state-of-the-art methods. “I think 
this paper goes a long way to solving 
the issue of how to integrate multiple 
network topologies,” Berger says.

Toward  
Precision Medicine

If you can connect all the net-
works into one integrated picture of 
a complex disease, that’s a first step 
toward using them to provide medi-
cal care that’s tailored to individual 
patients. “We’re all working toward 
precision medicine,” Ideker says. 

He envisions a “clinic of the future” 
where a computer simulates diseased 
cell or tissue, informed by all the avail-
able interaction data. “You would load 
a patient’s particular mutations and 
environmental conditions onto that 
model and you would compute the 
drug that best returns that model to its 
normal state,” Ideker explains. His lab is 
already working on such a model for a 
cancer cell. “Of course, we’re not going 
to get there tomorrow. But it’s important 
to have the vision,” Ideker says. “We’re 
going after this vision already. Time 
will tell how fast we can push it.”  

Melded Network. In Mashup, the high-dimensional 

topological patterns in individual networks are canoni-

cally represented using low-dimensional vectors, one 

per gene or protein. These vectors can then be plugged 

into off-the-shelf machine learning methods to derive 

functional insights about genes or proteins including 

protein function prediction, gene ontology reconstruc-

tion, and genetic interaction prediction. Reprinted with 

permission from: Cho H, Berger B, Peng J. Compact 

integration of multi-network topology for functional 

analysis of genes. Cell Systems. 2016;3:540-8.
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R  
 
evolutionary technologi-
cal advances in the areas of 
autonomous vehicles, speech 

recognition, cybersecurity, and earthquake 
prediction all depend on the family of 
artificial intelligence techniques known as 
deep learning.

But no field stands to benefit more 
from this approach than biomedical image 
analysis, a painstaking task that cur-
rently falls to highly trained radiologists 
and pathologists. Imagine, for example, a 
computer program that can detect a suspi-
cious mass in a mammogram or identify a 
handful of abnormal cells in a biopsy slide.

The application of deep learning 
algorithms to biomedical image analysis is 
still in its infancy. Yet researchers around 
the world are already achieving uncanny 
results, and it is only a matter of time 
before their as-yet-experimental models 
enter the clinic. Once that happens, propo-
nents say, deep learning will enable earlier 
and more accurate disease detection, allow 
more precisely tailored treatment plans, 
and ultimately improve patient outcomes. 

“In the next two to five years, I see 
for the first time the possibility that the 
engineering tools that we’re develop-
ing will actually affect the clinic and 
start to advance medicine,” says Hayit 
Greenspan, PhD, head of the Medical 
Image Processing and Analysis Lab at Tel 
Aviv University and co-editor of the book 
Deep Learning for Medical Image Analysis.

Yet before deep learning can realize 
its potential to transfigure biomedicine, it 
has some hurdles to leap. For one thing, 
the technology is still fairly limited and is 
currently better suited to performing rote 
tasks rather than more advanced diag-
nostic ones. For another, there is some 
question regarding just how much arti-
ficial intelligence patients and doctors 
will accept in the clinic. And finally, 
there’s an urgent need for more train-
ing data to teach the deep learning 
models how to do their jobs—a 
problem that researchers are cur-
rently addressing in multiple ways.  

Ultimately, how these issues are 
resolved will determine precisely 
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how deep learning will enter the realm of 
clinical medicine. Nonetheless, if recent 
experimental studies are any indication, 
it’s ultimate impact is virtually assured—a 
question of how and when, rather than if. 

Computer, Teach Thyself

Deep learning relies on sophisti-
cated statistical models known as neural 
networks. Inspired by the human brain, 
these consist of virtual neurons—what 
Thijs Kooi, a PhD candidate in the 
Diagnostic Image Analysis Group at 
Radboud University Medical Center in 
the Netherlands, describes as “rudimentary 
elements of computation.” In a deep neural 
network, these are organized in multiple 
data-processing layers. Each layer trans-
forms a piece of input and passes it to the 
next layer in such a way that the model can 
eventually learn to master complex tasks 
that it was never programmed to handle. 

Traditional machine learning algo-
rithms must be told which image features 
to consider when classifying a tumor 
as malignant or benign. But if you feed 
enough images of malignant and benign 
tumors to a neural network—or more 
precisely, to a deep convolutional neural 
network (CNN), a species of deep learning 
model that is particularly well suited to 
image analysis—it will eventually learn 
to distinguish between them on its own.

Robot Doctors? Not So Fast:  
Short-Circuiting 
the Hype Cycle

In a paper published in the jour-
nal Nature in February of 2017, Andre 

Esteva and Brett Kuprel, PhD can-
didates in the department of electri-
cal engineering at Stanford University, 
reported that a CNN they trained on 
more than 1.4 million images was ulti-
mately able to detect and classify vari-
ous forms of skin cancer as accurately as 
21 board-certified dermatologists.

Similarly, researchers at Google 
reported in 2016 in the Journal of 
the American Medical Association that 
they trained a CNN to diagnose dia-
betic retinopathy—an eye disease that 
afflicts almost one third of all diabe-
tes patients and constitutes a leading 
cause of blindness—as accurately as 
seven board-certified ophthalmolo-
gists. More recently, several of the same 
Google researchers trained a CNN to 
match and even exceed the performance 
of a pathologist when identifying slide 
images of breast cancers that had metas-
tasized to a patient’s lymph nodes. 

Other groups, meanwhile, have 
used deep learning to identify signs of 
Alzheimer’s in MRI scans of the brain, to 
detect lung cancer, and to spot musculo-
skeletal abnormalities in bones and joints.

With successes like these, it might 
seem as if deep learning is on the cusp 
of rendering obsolete the highly edu-
cated human beings who are currently 
responsible for analyzing medical images. 
And advocates do anticipate that their 
autodidactic algorithms will soon under-
take at least some of the tasks currently 
performed by flesh-and-blood doctors. 

“I think it should be possible to 
replace routine image reading tasks in 
the next 5 to 10 years or so,” says Kooi. 

But today’s physicians need not 
worry about their job security just 
yet. For one thing, claims of deep 

learning models matching—or best-
ing—the performance of human beings 
can be misleading, Greenspan says. 

Often, such horse races are conducted 
by inviting radiologists or other expert 
human readers into the lab and showing 
them the same simplified 2-D images 
that are fed to a model. But this does 
not resemble the real-life workflow of 
a radiologist; and under those circum-
stances, a human reader may prove far 
less reliable than he or she might in the 
clinic, making the algorithmic competi-
tion look far better by comparison. 

It’s possible that deep learning is 
approaching the peak of a “hype cycle,” 
says Daniel Rubin, MD, MS, associ-
ate professor of biomedical data sci-
ence, radiology, and medicine, who runs 
the Stanford Quantitative Imaging 
Laboratory. He collaborates on a vari-
ety of projects that employ a broad 
array of machine-learning meth-
ods and worries that deep learning is 
drawing attention away from other 
technologies that are still useful. 

Deep learning algorithms have proven 
remarkably adept at standard radiological 
and pathological tasks such as segmenta-
tion, detection, and categorization. Yet 
as Greenspan explains, all of these are 
essentially problems of classification. 
For example, a deep neural network can 
be assigned the task of analyzing an 
x-ray, CT scan, or MRI at scales rang-
ing from single pixel to region of interest 
or entire image, estimating the prob-
ability that it belongs to a particular 
class and labeling it accordingly: organ 
or surrounding tissue, normal or abnor-
mal, cancer type A or cancer type B.

But as Rubin points out, much of 
what doctors do goes well beyond pattern 

recognition and image clas-
sification. It involves a complex 
combination of knowledge, 
reasoning, and inference. And 
while deep learning might 
eventually capture all of that, 
right now, it falls far short. 

It is therefore likely that 
deep learning models, which 
do not grow bored or fatigued 
when forced to examine scads 
of mammograms or slide 

Recent work to diagnose and classify skin cancers using deep learning has proven remarkably successful. Image courtesy 

of the website of the National Cancer Institute (https://www.cancer.gov).
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images, will initially be applied to relatively 
mundane tasks. Greenspan points out that 
this will allow physicians to become accus-
tomed to the technology while enhancing 
their productivity and accuracy, freeing 
them to deal with more subtle problems, 
even as deep learning researchers gradu-
ally hone more advanced applications. 

Shadi Albarqouni, PhD, a post-
doctoral research associate at the 
Technical University of Munich, and 
colleagues recently trained a CNN to 
decompose chest x-rays in such a way 
that bony structures like the ribs and 
spine, which can obscure the soft tis-
sue of the lungs, are eliminated from the 
picture. This would allow radiologists 
to more easily focus on areas of inter-
est and perceive soft tissue abnormali-
ties, thereby improving their chances 
of making a correct diagnosis. 

And in a paper published in 2016, 
Albarqouni and others trained another 
CNN to analyze fluoroscopic x-ray images 
and identify the catheter electrodes that 
surgeons insert into patients during 
electrophysiology procedures, tagging 
them with colored labels and estimating 
their depth to enable precise placement.

Beyond such supporting roles, how-
ever, it is unclear exactly to what extent 
physicians—and their patients—will 
accept AI in the realm of healthcare.

Rubin himself has used CNNs to 
identify and grade the brain tumors 
known as gliomas in digital images of 
histopathology slides, and to identify 
and localize masses in mammograms. 

Yet as he points out, “patients want a 
human being in the loop in their care.” 
So does the law, which requires that 
human beings, not algorithms, assume 
liability for medical decisions. “Can it 
be legally acceptable to have a com-
puter practice medicine and replace the 
decision-making of a person?” he asks.

The Black Box Problem 

Physicians themselves may also be 
uncomfortable with the results of deep 
learning because CNNs are black boxes. 
While they can determine which fea-
tures are most useful for discriminat-
ing between different classes of images 
(e.g., tumors versus benign masses), the 
models do not reveal which of those 

features they rely upon, or how, pre-
cisely, they arrive at their decisions—for 
example, if a tumor is malignant or not.

“The nature of these models is such that 
we give them a raw framework for how 
we think a problem works, and they fill in 
all the details,” says Kooi, who develops 
deep learning models capable of detect-
ing breast cancer in mammograms. “How 
it fills in all the details is something we 
don’t really have a lot of control over.” 

Researchers are working on ways of 
peeking inside the models to understand 
how they select discriminant features. For 
example, a group of Stanford graduate 
students led by Avanti Shrikumar, a 
PhD candidate in computer science, 
recently developed an algorithm called 
DeepLIFT that attempts to determine 
which features are important by analyz-
ing the activity of a model’s neurons 
when they are exposed to data. A team 
of engineers at the Israel-Technion 
Institute of Technology have devised a 
method of visualizing the neural activ-
ity of a network that resembles what 
one sees in fMRI of the human brain. 
And Rubin recently published a paper 
in which he and his colleagues trained 
a CNN to distinguish between benign 
and malignant breast tumors, and then 
used a visualization algorithm, called 
Directed Dream, to heighten and exag-
gerate specific details in order to maxi-
mize the images’ scores as either benign 
or malignant. The resulting “CNN-based 
hallucinations” effectively show how the 
CNN learns clinically relevant features, 
lending credibility to the results.

But much work remains to be done 
on this front. And Rubin suspects that 
while doctors might be willing to accept 
deep-learning input for straightfor-
ward screening tasks—so long as the 
network’s track record is strong—they 
would be far less likely to accept some-
thing more complex and consequential 
like a diagnosis from a model whose 
inner workings remained a mystery. 

“Physicians will not accept the 
output of a decision support system 
that does not also provide explana-
tions for its answers,” he says. 

For all these reasons, even if deep learn-
ing were to reach the point where it rivaled 

To diagnose diabetic retinopathy, doctors examine photographs of the back of the eye, or fundus, for hemorrhages. 

Deep learning models can be trained to recognize such signs as well. The leftmost column shows unannotated 

fundus images from a large dataset hosted by Kaggle.com, an online platform for predictive modeling and analysis 

competitions, that researchers at Radboud University in the Netherlands used to train and test a CNN. The middle 

column shows the same images with hemorrhages marked by expert human annotators. The rightmost column 

shows the output of the CNN. © 2016 IEEE. Reprinted, with permission, from van Grinsven MJJP, van Ginneken B, 

Hoyng CB, Theelen T, S´anchez CI., 2016. Fast convolutional neural network training using selective data sampling: 

Application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35 (5), 1273–1284 (2016).
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human intelligence, it wouldn’t necessar-
ily represent the end of human doctors.

The Data Labeling Dilemma

Yet another obstacle must be sur-
mounted if deep learning is to achieve 
its full potential: the quantity of the 
data that this particular flavor of AI 
requires in order to work its magic.

Deep neural networks can do more auto-
matically than any prior class of machine-
learning model. Feed them enough properly 
labeled data, and they will learn to perform 
a given task without human intervention.

But the phrase “enough properly 
labeled data” is a crucial one. A computer’s 
astonishing capacity to learn without 
human intervention comes at a price; 
namely, the need for a massive amount 
of annotated training data. A CNN, for 
example, may be capable of learning to 
distinguish between benign and malig-
nant tumors all by itself. But to do so, it 
must first be fed thousands or perhaps 
millions of images that have already been 
correctly labeled benign or malignant, a 
process known as supervised learning.

“This is the ‘no free lunch principle,’” 
says Alex Ratner, a PhD candidate in 
computer science at Stanford. Deep learn-
ing, he explains, may do much more on its 
own than other machine learning methods; 
but “it needs more training data to make up 
for that extra complexity in the models.”

Unfortunately, large-scale annotated 
databases of biomedical images can be 
hard to come by, and having expert human 
annotators create new ones from scratch 
is laborious, costly, and time-consuming. 
Access to sufficient labeled training data 
is, therefore, a significant obstacle. 

“We work closely with hospitals and 
radiologists to give us annotated data,” 
says Greenspan, who has used CNNs to 
detect metastatic liver cancer in 3-D CT 
scans, segment multiple sclerosis lesions 
in MRI images, and label pathologies 
in x-ray images, among other things. 
“Collecting the necessary data for these 
tasks is a slow and demanding process.”

In addition, says Kooi, “These models 
are still relatively stupid.” In particular, 
they don’t do nuance very well: Having 

learned to spot obvious examples of 
common cancers by sifting through a 
particular training dataset, for instance, 
they may stumble when confronted with 
rare or unusual ones, or with anoma-
lies they have never seen before.

Dealing with Nuance: 
Data Augmentation

To some extent, researchers can 
compensate for a lack of labeled training 
data by using a technique known as data 
augmentation. This involves transform-
ing some of the training data upon which 
the deep learning model hones its skills 

(e.g., rotating images, altering their color, 
simulating jitter, etc.), thereby prepar-
ing it for the kinds of variations and 
artifacts it might encounter when it is 
asked to process previously unseen data. 

In a paper that appeared in Medical 
Physics this past March, Kooi and his 
colleagues successfully used a CNN to 
distinguish benign cysts from malignant 
masses in standard digital mammograms, 
achieving results comparable to those 
attained with a cutting-edge imaging tech-
nique known as spectral mammography. 

They did so in part by processing some of 
their training data to mimic the natural 
variations in the amount of tissue that can 
surround a breast tumor, thereby alter-
ing its appearance in a mammogram. 

Kooi’s CNN was required to analyze 
only small patches extracted from much 
larger images, however—patches that 
another model, known as a candidate 
detector (which was not itself a deep 
neural network), had already singled 
out as containing regions of interest. 

Radiologists, on the other hand, typically 
examine complete mammograms, viewing 
suspicious areas in the context of the entire 
image. They also track changes in a patient’s 
scans over time, and note potentially 

significant symmetries and asymmetries 
between the left and right breasts. And they 
consider a whole wealth of information—a 
patient’s lab results, her medical history, 
her age and demographics—that is not 
contained within the images themselves. 

Putting all of this into the hopper leads 
to better informed and more accurate 
diagnoses. Kooi and others are trying to 
incorporate such diverse sources of infor-
mation into deep neural networks, in part 
by integrating them with other computa-
tional methods; but they are not there yet.

Data augmentation is used to enhance small collections of training data. Here, Thijs Kooi and his colleagues at 

Radboud University in the Netherlands employ it to generate variations on the images used to train a CNN to 

distinguish between breast cancer tumors and benign cysts. The three images in the top row are of normal breast 

tissue. The leftmost patch in the bottom row, on the other hand, contains a mass or cyst. Superimposing the three 

normal images from above over the abnormal one produces the remaining images in the bottom row, simulating 

the different amounts of tissue that might surround a lesion in a mammogram. Reprinted with permission from 

Kooi T, van Ginneken B, Karssemeijer N, den Heeten A, Discriminating solitary cysts from soft tissue lesions in 

mammography using a pretrained deep convolutional neural network, Medical Physics 44:3 (1017-1027) 2017. 
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Relying on  
General Knowledge: 
Transfer Learning 

Data augmentation represents one 
way of addressing the problem of limited 
training data. So-called transfer learning 
represents another: a CNN can initially 
be trained on a large dataset of standard 
images (dogs, cats, planes, umbrellas), 
and then retrained on a smaller dataset 
of biomedical ones (brain scans, chest 
x-rays, pathology slides). The idea is that 
the network will learn general, broadly 
applicable image features from the larger 
dataset, and transfer or apply that acquired 
knowledge to the smaller dataset, which 
will fine-tune it for a particular task such 
as segmenting organs or detecting lesions. 

“The intuition behind transfer learn-
ing is that a radiologist doesn’t develop 
a whole new visual cortex every time he 
learns a new task, but relies on stuff that he 
already knows—and we can do the same,” 
says Kooi. “We can take a network that was 
trained on discriminating cats, for instance, 
then adapt the network to medical tasks.” 

Esteva and Kuprel, for example, 
pre-trained their CNN on a set of 
approximately 1.28 million images, 
comprising 1,000 object categories, 
culled from ImageNet, a massive online 
visual database. They then retrained the 
model on 129,450 dermatologist-labeled 
clinical images drawn from clinician-
curated online repositories, and from 
the Stanford University Medical Center. 
The end result: a model that performed 
as well as a clutch of human doctors.

In his 2017Medical Physics paper, Kooi 
took the concept of transfer learning a step 
further: Instead of starting with generic 
images, he pre-trained his deep neural net-
work on a large dataset of screening mam-
mograms, essentially teaching the model 
to distinguish tumors from non-tumors—
a medical task that was related to, but not 
quite the same, as the one he was really 
interested in. He then retrained the net-
work on a much smaller dataset of diag-
nostic mammograms, and had it learn how 
to discriminate between tumors and cysts. 

“Often, people train their models 
on ImageNet, and then fine-tune them 
with a medical data set,” Kooi says. “My 

argument is, ‘It’s always better to train the 
model using a task that is more related to 
the problem that were trying to solve.’”

In the end, his model nearly 
matched the performance of a system 
that used a different kind of statisti-
cal model—one that relied on features 
selected by human beings, rather than 
on deep learning—along with a more 
advanced form of mammography.

Outsourcing Annotation

There are many other ways of dealing 
with the paucity of biomedical train-
ing data, some of which take a creative 
approach to annotation itself. In a 
paper published last year, for example, 
Albarqouni and colleagues combined 
the ground-truth of expert annotations 
with the crowd-truth of nonexpert ones. 

The goal was to improve the per-
formance of a CNN that was trained 
to detect instances of mitosis, or cell 
division, in breast cancer biopsy slides. 
These visible signs of mitosis,  known 
as mitotic figures, appear as small black 
dots under the microscope, and represent 
an important criterion for determin-
ing the aggressiveness of a tumor—
and hence for establishing a patient’s 
prognosis and course of treatment.

The model was trained on expertly 
annotated images from only eight patients. 
But when it came time for the net-
work to label previously unseen images, 
Albarqouni and his team introduced a 
new twist: whenever the model predicted 
that an image was more than 90 per-
cent likely to contain mitotic figures, it 
cropped the region of interest and sent 
the resulting patch for annotation by at 
least 10 non-experts via a crowdsourcing 
platform. These nonexperts, who lacked 
any medical experience, were given a brief 
training session and a quiz designed to 
determine their accuracy. They were then 
asked to label the patches they received: 
Were the little black dots singled out 
by the CNN mitotic figures, or not? 

Different users often arrive at differ-
ent judgments, resulting in conflicting 
or noisy labels. To resolve such differ-
ences, Albarqouni and his colleagues 

built an “aggregation layer” that collected 
everyone’s annotations and arrived at a 
consensus label for each patch through 
majority voting, with each user’s vote 
weighted according to their accuracy. 

The results of that vote were returned 
to the deep learning model, which took 
the crowdsourced labels into account in 
its next round of predictions—a crowd-
driven fine-tuning process that effectively 
boosted the network’s performance, 
as measured by the ratio of true posi-
tives to false positives, by 3 percent. 

In a subsequent project, Albarqouni 
gamified the crowdsourcing component. 
He and his colleagues transformed the 
patches into 3-D stars whose shape, size, 
and color corresponded to the likeli-
hood that they contained mitotic figures. 
They then asked users to play a game in 
which they used a virtual plane to collect 
the best candidates. This “playsourcing” 
platform performed 10 percent better 
than its non-gamified counterpart, an 
improvement that Albarqouni attributes 
to the motivating influence of gameplay. 

“The player is trying to get a bet-
ter score,” he says; and that trans-
lates into a performance boost 
for the model. It’s a win-win.

Automating 
Everything Noisily  

One group is taking the crowdsourc-
ing idea one step further: They’re gen-
erating (and de-noising) cheaper and 
messier training data with rules that 
people write and machines apply.  It’s a 
method called data programming that 
was developed by Alex Ratner and others 
working in the lab of Stanford computer 
scientist Christopher Ré, PhD. Rather 
than requiring domain experts or non-
experts to hand-label large datasets for 
training purposes, data programming 
allows them (or their friendly neighbor-
hood coders) to write small snippets of 
code that encapsulate the heuristics and 
rules of thumb that they would use to 
annotate the data themselves. Those bits 
of code—called labeling functions—
are then used to develop a generative 
model that can automatically label large 
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quantities of data for training purposes.
Because these labeling functions may 

overlap and conflict, the labels they pro-
duce are inaccurate, or noisy. (The process 
of training a model using such noisy labels 
is known as weakly supervised learning, 
or weak supervision.) But Ratner and his 
colleagues, who have developed an open-
source data programming platform called 
Snorkel, use a variety of computational 
methods to compensate. The large volumes 
of noisily labeled data pumped out by the 
generative models created with Snorkel, 
which are not deep neural networks, can 
therefore be used to train high-performing 
discriminative models, which are.

Most of their early efforts involved 
building text-based datasets. But members 
of the Ré lab have begun applying data 
programming and other weak supervision 
techniques to images as well. And some of 
their most interesting work involves both.

Ratner, for example, has been work-
ing with Rubin and Stanford radiologist 
Lawrence Hoffman, MD, on various 
projects involving radiological images 
and their accompanying text reports. 
The images have not been labeled, but 
the information required to do so—a 
physician’s clinical judgment that a 
bone tumor is benign or malignant, for 
example, or that an arterial blockage has 
been cleared—is buried in the reports. 

Ratner is therefore working on ways of 
writing labeling functions in Snorkel that 
can “read” radiology reports and extract 
labels that can be used to train an image 
model such as a CNN, enabling it to clas-
sify radiological images without the benefit 
of any text whatsoever. This “cross-modal” 
approach has succeeded with test data, and 
will soon be deployed on real clinical data.

“If this works, then the model 
you’ve trained could look at an image 
before the radiologist has actu-
ally dictated the report, and come up 
with a classification,” says Ratner.

Paroma Varma, another doctoral can-
didate in the Ré lab, and colleagues have 
developed a different software platform 
called Coral to apply the idea of weak 
supervision directly to images and video. 
In a recent paper, she and one of Rubin’s 
PhD students, Darvin Yi, had Coral 
label tumors in mammograms as either 

malignant or benign, and used that data to 
train a CNN to distinguish between unla-
beled examples of the two. Remarkably, 
this Coral-trained CNN proved almost 
as accurate as a CNN that had been 
trained on a small hand-labeled dataset.

Varma and another member of the Ré 
lab, PhD candidate Braden Hancock, 
are now attempting to crowdsource the 
act of creating labeling functions. In one 
proof-of-concept experiment, they posted 
images to the crowdsourcing platform 
Mechanical Turk and asked users not 
only to label them, but also to explain 
their reasons for doing so. They then 
used a language tool known as a seman-
tic parser to convert those natural lan-

guage explanations into code. The result: 
instant labeling functions, automatically 
generated from standard English. The 
images Varma and Hancock used were 
not medical ones, but if Albarqouni’s 
crowdsourcing work is any indication, 
the approach certainly holds promise.

Other automated solutions to the 
training data dilemma are also under 
development. Greenspan, for example, has 
been using deep learning models known 

as Generative Adversarial Networks 
(GANs) to generate synthetic training 
data using small training sets. Her work 
is still in the experimental phase, but if 
successful, it could enable one deep learn-
ing model to produce the data required 
to train another deep learning model.

Given the pace at which the field is 
moving, the application of deep learning to 
biomedical images is likely to keep plenty 
of doctors and computer scientists busy for 
the foreseeable future. Radiologists will be 
presented with more and more informa-
tion to factor into their clinical decisions 
as artificial intelligence gradually enters 
the scene. And computer scientists, for 
their part, will continue to grapple with 

the challenges presented by data-hungry 
deep learning models and the noisy 
medical data required to feed them. 

Paroma Varma and her colleagues in Christopher Re’s 

lab have developed a platform called Coral to help users 

label large training datasets of images and video for deep 

learning purposes. Such datasets can be used to teach a 

deep learning model how to recognize images of people 

on bicycles—or how to segment a potential tumor on a 

bone x-ray. Courtesy of Paroma Varma.
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BY CHAND T. JOHN, PhD

WHAT VALUE COULD FRACTALS ADD 
TO BIOMEDICAL IMAGE ANALYSIS?

We collect large 
amounts of 
biomedical image 

data, hoping to glean insights 
into our biological world. While 
deep learning has become pop-
ular for finding features that, for 
example, distinguish between 
benign and malignant tumors 
in biomedical images, how 
these features relate to conclu-
sions we care about remains a 
mystery hidden in a labyrinth of 
neural networks.

Fractals, “self-similar” shapes whose parts resemble 
the overall shape itself, better connect biomedically 
relevant properties to their internal parameters. A 
fractal has properties like fractal dimension, a mea-
sure of how its complexity changes across scales, and 
lacunarity, a measure of sparsity and non-uniformity, 
that relate to patterns of interest in biomedical 
images. For example, fractal models of the lung have 
revealed correlations between tumor presence, higher 
fractal dimension, and lower lacunarity. Fractal mod-
eling of brain cancers has allowed determination of 
tumor stages using fractal dimension. These medically 
relevant properties of a fractal are closely tied to its 
self-similar structure, which itself emerges from the 
fractal’s defining parameters. In this way, fractals offer 
a tantalizing strength in connecting biomedically 
relevant properties back to their internal mathemati-
cal parameters in a way that deep-learning models 
currently do not.

While fractals lend insight into their own internal 
structure, it’s tempting to ask whether fractal mod-
els can go even deeper. Could a fractal’s parameters 
somehow relate to other meaningful aspects of an 
image’s geometry, similar to how Newton’s laws relate 
geometric parameters of planetary trajectories to the 
geometry of underlying gravitational force fields?

One type of fractal offers a surprisingly tangible 
set of parameters: smooth curves that resemble the 
fractal’s own shape. Smooth fractals are curves such as 
parabolas, which, as it turns out, are fractals them-
selves. For example, a pair of mappings called affine 
maps, carefully chosen, can squeeze and stretch a box 
repeatedly in a way that causes the resulting shape to 
converge toward a parabola.

Starting with multiple smooth fractals, combin-

ing their affine maps into one aggregate mapping, 
and repeatedly applying that aggregate mapping to 
a box, results in a shape that, despite its complexity, 
is completely characterized by those smooth curves 
with which we started.

Could smooth curves comprising such fractals be 

chosen based on meaningful geometric aspects of an 
image, such as vector fields of most rapid changes in 
pixel intensity, thereby tying biomedically relevant 
properties of fractals back to other geometric features 
of biomedical images? While more research is needed 
to decide whether fractals, alongside deep learning, 
can join the collection of mathematical gems that 
propel biomedical image analysis to new heights, it’s 
an intriguing idea to explore. 

Under The Hood

detai ls

Chand John, PhD, is a senior software engineer  

and educator.

The polynomial curves on the left fully represent the fractal on the 

right. Courtesy of Chand John.

Starting with a square and repeat-

edly applying two affine trans-

formations leads to a set of par-

allelograms that converge to the 

graph of y = x2, a polynomial curve. 

Courtesy of Chand John.
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Seeing Science

AN AUTOMATED SUPERTREE: 

A Model for Extracting Literature-based Knowledge

Too much scientific knowledge is 
buried in published literature. Case 
in point: The phylogenetic relation-

ships among microbial species are locked 
into numerous publications about indi-
vidual species and their close relatives. And 
because those publications don’t include 
machine-readable data, the information is 
difficult to extract. Thus, efforts to create 
supertrees (large trees assembled from a 
combination of many smaller phylogenetic 
trees) typically involve a handful of graduate 
students doing a massive cut-and-paste 
job—connecting trees bracket by bracket on 
a computer. “It’s mind-numbingly tedious,” 
says Ross Mounce, PhD, Open Access 
Grants Manager at the Arcadia Fund. 

As a postdoctoral research associate at 
Cambridge University, Mounce set out 
to create a microbial supertree by using 
computer vision to extract information 
from smaller phylogenetic trees in a single 
journal. “We point the program at the file 
and it will do its best to extract phyloge-
netic data from the image,” Mounce says. 
The result is not the best tree, Mounce 

says, but a proof-of-concept for 
developing a scalable, automated 
process. “It’s a solvable problem,” 
he says, that has been made easier 
in the United Kingdom by recent 
changes to copyright laws. As long 
as a researcher has legitimate 
access to a published piece of 
literature (through a university 
library, for example), “it’s legal 
to do sophisticated analyses 
on it without asking permis-
sion of the copyright holder,” 
Mounce says. Without that 
legal right, it would be nearly 
impossible to perform scalable synthe-
ses of the literature. 

“The future is really exciting, because 
if you had an ongoing reproducible 
pipeline, you could have a tree of life 
that self-updates every day,” Mounce 
says. The same is true for any piece of 
scientific knowledge: “You could check 
back and see a self-updating synthesis 
of the current evidence on any topic,” he 
says. “That’s the idea really.”  

BY KATHARINE MILLER

Using an automated, scalable method, Mounce and his col-

leagues applied computer vision techniques to automatically 

convert phylogenetic trees from figures in a single journal (the 

International Journal of Systematics and Evolutionary 

Microbiology) back into re-usable, computable, phyloge-

netic data. They then used established supertree methods 

to generate the tree of microbial life shown here. Reprinted 

from Mounce R, Murray-Rust P, Wills M, A machine-com-

piled microbial supertree from figure-mining thousands of 

papers. Research Ideas and Outcomes 3: e13589. https://

doi.org/10.3897/rio.3.e13589, (2017).


