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BY AVI MA’AYAN, PhD
Professor, Department of Pharmacological Sciences;  

Director, Mount Sinai Center for Bioinformatics;  
and Director of LINCS-BD2K DCIC.

The current NIH 
review process lacks 

standards for fair 
and objective ways 
to assess the usage, 
performance, and 

impact of software 
tools and databases. 

BIG (DATA) CHANGES
Improving the Evaluation of Biomedical Academic Software Development Projects

With the increasing 
diversity of assays 
that produce 

massive quantities of data, 
experimental labs are becom-
ing more and more dependent 
on software tools and online 
databases, as well as collabora-
tions with bioinformaticians. 
There is a clear need to attract, 
train, and support more bio-
medical data analysts as well 
as fund more computational 
“dry-lab” projects. 

But throwing more money at software develop-
ment projects is not enough. The National Institutes of 
Health (NIH) needs to change how it evaluates such 
projects. NIH study sections have been optimized for 
decades to fairly evaluate experimental wet-lab proj-
ects. Applying the same approach to computational 
projects doesn’t yield what is really needed: having the 
most useful software tools and databases continually 
maintained and enhanced for the long term. 

The current NIH review process lacks standards 
for fair and objective ways to assess the usage, 
performance, and impact of software tools and 
databases. Commonly used metrics such as down-
load volume, unique users, and query submissions 
are currently not required or verifiable. One possible 
solution is to develop a system similar to Google 
Analytics where software developers would insert an 
NIH–certified JavaScript code into their tool and 
database hosting websites. This code would collect 
and send user information to a centralized public 
repository. An alternative would be to develop a 
global authentication mechanism where users would 
need to sign in before using NIH supported tools 
and databases—though this solution may deter users 
who wish to stay anonymous.

The popularity of tools and databases is not always 
the best measure of their quality. NIH should seek 
out more objective benchmarks to assess the quality 
of algorithms, tools, and databases so the best—those 
that maximally extract knowledge from the raw 
data—are selected and recommended.

NIH also needs to find ways to better incentivize 
the maintenance and enhancement of software tools 
and databases past their funding term. Currently, 
useful and popular tools and databases may abruptly 
disappear upon cessation of funding. Such sudden 
disappearance can leave wet-bench investigators 
hanging, without the ability to continue their projects 
or reproduce their results. Hence, there is a need to 
develop resources for hosting web-based software 
applications and databases so that they can remain 
online and available even after the conclusion of 
an NIH-supported project. 
This can be solved by requir-
ing NIH grant–supported 
biomedical software develop-
ers to provide their tools and 
databases in self-contained 
executable environments, such 
as Docker containers, so that 
they can be redeployed and 
hosted in the cloud. In this 
way, the NIH could cover the 
low monthly bill of keeping 
these software services active 
and available for many years after the funded project 
has expired. The source code for such projects could 
also be mandated to be open and placed in codebase 
repositories for the community to potentially continue 
to enhance it. Metadata and versioning of tools should 
also be required for better indexing and provenance.

A fair review of software projects would also 
consider yet other differences between wet- and 
dry-lab projects. The life cycle of software projects is 
shorter than that of typical experimental projects. In 
addition, to complete software projects, academics 
often need to hire professional software developers 
who are presently in high demand and require higher 
salaries than most NIH-funded researchers can 
afford. It is also difficult to retain these employees 
because they are often attracted to work in industry. 
Big Data science is gradually engulfing biomedical 
research where computational analysis is becoming 
the central pillar. Rapid adaptation to these changes 
is essential, including better management of aca-
demic software research development projects. 
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BY KATHARINE MILLER

BRINGING LIGHT TO DARK DATA:

Using SNORKEL to Label Training Data 

Unstructured data—sometimes called dark 
data—abounds in many domains, including 
biomedicine. It includes text, such as pub-

lished scientific literature or physician notes, as well 
as tables, figures and images. Using computers and 
advanced machine-learning approaches, researchers 
are becoming adept at extracting valuable knowledge 
from dark data. But machine-learning algorithms 
often require large sets of labeled training data, which 
in many areas requires the efforts of domain experts. 
This is a serious bottleneck: “Making training data 
is so expensive that there are a lot of domains that 
could never afford to do it,” says Jason Fries, PhD, 
a postdoctoral research fellow who is part of 
the Mobilize Center at Stanford University. 
Moreover, researchers who want to use 
machine learning find that creating 
labeled training data takes up a sig-
nificant portion of their time.

To address that problem, Fries, 
Alex Ratner, Steven Bach, PhD,  
and others in Chris Re’s lab at 
Stanford are developing an applica-
tion framework called Snorkel that 
can automatically generate labeled 
training data using sources of “weak 
supervision”—i.e., sources of rules 
that were not directly intended for 
the labeling purpose and for which there’s no expecta-
tion that the labels will be perfect. For many tasks, 
Snorkel’s results are surprisingly good. In recent work 
extracting mentions of diseases and chemical names 
from PubMed abstracts, for example, “Snorkel can 
train a model that performs as well as one trained on 
human-labeled data,” Fries says. 

Snorkel starts with a bunch of noisy 

rules—heuristics—for finding mentions of some 
concept, such as a disease. In biomedicine, these are 
often derived from ontologies, but they can come from 
other sources as well. Snorkel then automatically learns 
the accuracy of these heuristics as they generate labeled 
training data, and then uses that accuracy information 
to de-noise those labels. Under the hood, Snorkel is 
training what’s called a generative model, and can be 

intuitively understood as having parallels to crowd-
sourcing algorithms, where the goal is to figure 
out which people do a better job than others 

at a particular task, and to take that accu-
racy into account in de-noising the data. 
Similarly, in Snorkel, if rules tend to 
agree with each other and cover a lot of 
data, Snorkel will trust them more than 
it will contrarian rules. But Snorkel has 
a significant advantage over crowd-
sourcing: “Instead of one person or a 

few people labeling a small subset, you 
have labeling functions that can scale to 
millions of samples,” Fries says. 

In the labeling of diseases, Snorkel 
actually has another advantage: 
It captures some of the inherent 
disagreement that exists around 
disease labels. In small human-

labeled datasets, gold standard disease 
definitions are often imperfectly negotiated by a small 
group of people, Fries says. Snorkel provides a natural 
mechanism for learning in the presence of disagree-
ment without resorting to manual adjudication.

In addition to extracting mentions of diseases 
and chemicals from PubMed abstracts, Snorkel can 
successfully extract relationships from the scientific 
literature, such as causal relations between genetic 

mutations and phenotypes. 
 For biomedicine, where ontologies are 

prevalent, Snorkel should prove particularly 
valuable, Fries notes. In their initial experi-
ments, there is only a small gap between the 
quality of labels generated using Snorkel 
with weak supervision by ontologies and 
the quality of ordinary labeled data—and 
in some areas there is no gap. “That’s a nice 
finding of the work,” Fries says. 
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For more information about Snorkel or to download this open-source 

application framework, visit http://hazyresearch.github.io/snorkel/

The Mobilize Center for Mobility Data Integration and Insight is an  
NIH Big Data to Knowledge (BD2K) Center of Excellence at Stanford University.



BY KATHARINE MILLER

THE HARMONIZOME: 

A Prototype for Integrated Datasets

For years now, biocomputational scientists have 
been talking about the need for better data 
integration. “People talk a lot about how data 

are in silos and not connected,” says Avi Ma’ayan, 
PhD, professor of pharmacological sciences at the 
Icahn School of Medicine at Mount Sinai and 
principal investigator of the BD2K-LINCS Data 
Coordination and Integration Center. After all that 
talk, Ma’ayan and his colleagues figured it was time 
to take action. So they created 
the Harmonizome, a collec-
tion of all the hottest and 
most exciting databases that 
everyone is using. “It allows 
you to find knowledge about 
genes and proteins that was 
buried in those silos but now 
is accessible.” 

To create the 
Harmonizome, Ma’ayan’s 
team gathered together the 
major omics databases as 
well as databases on mouse 
and human phenotypes and 
processed them into a relatively simple format. That 
processing involved taking either raw data or format-
ted data from existing databases and mapping it onto 
common IDs for genes. They also processed the data 
into simplified formats such as relational tables, mak-
ing it ready for machine learning. “It makes it very 
easy for someone to do predictions of functions for 
genes,” Ma’ayan says. 

That’s what makes Ma’ayan most excited—the 
potential for using the Harmonizome to impute 
knowledge across data resources. His favorite example 
thus far, which was included among other examples 
in a paper about the Harmonizome published in 
Database in 2016, involves the prediction of mouse 
phenotypes. Using the Harmonizome, his team was 
able to create tables that describe functions and attri-
butes of various genes and then use those to predict 
mouse phenotypes associated with specific knockouts. 
For example, from mouse knockout experiments, the 
researchers first flagged gene knockouts that increase 

mouse lifespan. Using the Harmonizome, Ma’ayan 
and his colleagues predicted the probability of genes, 
not yet knocked out in mice, for likelihood of increas-
ing lifespan. “You can do this—predict other genes 
that should be relevant to aging—using machine 
learning,” he says. “And those could be future drug 
targets for potentially increasing our lifespan or 
improving our healthspan.” 

Ma’ayan thinks of the Harmonizome as a proto-

type that is leading the way by showing what can be 
done. Some other data integration efforts allow search 
at the metadata level only. “The nice thing about the 
Harmonizome is that it enables search at the data 
level,” he says. But, he acknowledges, making it scal-
able could be challenging. 

Still, the Harmonizome has proven popular. 
During its first year, the site had 60,000 unique users 
visit and 250,000 page views. “We get about 400 users 
per day now,” Ma’ayan says, with about 40 percent 
sticking around for a while because they are finding 
it useful. He’d like to learn more about how others 
are using the resource. “I’m sure people can think of 
creative ways to use it that we haven’t thought of,” 
Ma’ayan says. “That will be the coolest thing.” 
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By applying machine learning to data from diverse resources integrated 

to create the Harmonizome, Ma’ayan’s team was able to predict likely 

knockout mouse phenotypes that have not yet been observed. Image 

Courtesy of Avi Ma’ayan.
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under
currents

TACKLING TUMORS

Turning Immune Cells into Cancer Killers

Tumors often contain a hodgepodge 
of cells. Some cells have genetic 
glitches, others don’t; some obey 

normal growth rules, others divide out of 

control. Immune cells enter the mix as well, 
initially swooping in to reject the tumor as 
they would other foreign substances. Later, 
however, these same cellular sentinels may 
inexplicably let down their guard, allowing 
the cancer to gain a foothold.

How do tumors outwit the 
body’s defense system? Scientists are 

chasing answers, and many think 
the insights gained could revolu-
tionize how we fight cancer. 

The revolution has already begun. 

Cancer treatments that harness the 
immune system are now a reality, and more 
are on the way. But with its many players 
and varied activities, the immune system’s 
response to tumors, which are themselves 
evolving, often stymies understanding. 
In this setting, computational biologists 
are playing an important role. Plumbing 

complex molecular profiling data can show 
how to activate key immune cells to fight 
cancer, why immunological cancer treat-
ments work for some patients and not oth-

ers, and which additional mol-
ecules could serve as potential 
targets for customized thera-
pies to train people’s immune 
cells to fight their own cancer.

Reprogramming  
Tumor Macrophages
Several types of immune 

cells, including macrophages 
and T-cells, turn traitor-
ous in the face of cancer. 
Macrophages are scavengers. 
Typically they roam the body 
and chew up unwanted debris 
and dying cells, even cancer-
ous ones. But macrophages 
also help with wound heal-
ing, and tumors can corrupt 
the scavenging cells to adopt 
this role inappropriately. 
With the switcheroo, mac-
rophages now “see the tumor 
like a wound,” says Michele 
De Palma, PhD, of École 
Polytechnique Fédérale de 
Lausanne (EPFL) School of 
Life Sciences in Lausanne, 
Switzerland. “They go there 
and help the tissue grow.”

But in cancerous tissue, “healing” 
responses are harmful. Could macro-
phages be reprogrammed to act more like 
tumor killers?

A clue came several years ago when 
De Palma and coworkers discovered that 
macrophages at tumor sites accumu-
late miR-511-3p, a specific microRNA 
molecule (miRNA), and turn down a 
number of genes that are typically active 
in macrophages. Unlike typical RNA, 
miRNAs themselves don’t get made into 

In this pseudo-colored scanning electron micrograph, cytotoxic T cells (red) attack an oral squamous cell cancer 

(white) as part of a natural immune response. Source: National Cancer Institute \ Duncan Comprehensive Cancer 

Center at Baylor College of Medicine. Creator: Rita Elena Serda.
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protein; instead, they dial back 
the activity of other genes 
by binding and preventing 
translation of their messenger 
RNAs (mRNAs). Discovered 
in the early 1990s, miRNAs 
play key roles in a range of 
developmental processes and 
in some human diseases—
including cancer, where studies 
have linked changes in a cell’s 
miRNA expression to its road 
toward malignancy. De Palma’s 
finding suggests miR-511-3p 
regulates genes to render 
tumor-associated macrophages 
ineffective at fighting cancer. 

The researchers wondered 
if shutting down miRNAs 
could shift macrophage behavior so 
they would fight tumors instead of 
ignore them. In a more recent study, 
they designed experiments to find out. 

These studies used mice engineered for 
two traits: the tendency to grow cancer-
ous tumors and an absence of DICER, an 
enzyme that is necessary for miRNAs to 
mature. Essentially, most miRNA activity is 
blocked in the macrophages of these mice. 
The result: a radical change in the macro-
phages’ gene expression profiles and behav-
ior. DICER-deficient tumor macrophages 
became “very nasty to tumors,” DePalma 
says. They behaved like macrophages fight-
ing a bacterial infection. And they didn’t 
just battle the tumor alone—they recruited 
cytotoxic T cells to attack and eliminate 
the tumor, De Palma’s team reported 
in June 2016 in Nature Cell Biology.

The team didn’t stop there. Knowing 
macrophages have several hundred miR-
NAs, and having established that shutting 
them off turns bystander macrophages 
into tumor killers, De Palma wanted to 
find out which specific miRNAs were 
responsible for this turnaround—and 
that’s where bioinformatics came in.

They used two approaches, one with 
mouse data and another with human 
data. In the first, the team isolated tumor-
associated mouse macrophages with and 
without DICER and compared their 

transcriptomes to identify differentially 
expressed genes. This allowed them to 
determine which mouse mRNAs are 
targeted by specific miRNAs. The second 
strategy, which was developed in col-
laboration with co-author Chia-Huey 
Ooi, PhD, a bioinformatician at Roche 
in Basel, Switzerland, involved analyz-
ing 171 publicly available blood samples 
from patients with acute myeloid leukemia 
(AML). For each sample, the researchers 
determined mRNA/miRNA signatures—
whenever gene A gets expressed, miRNA 
B goes up—and used those signatures to 
predict which miRNAs potentially regulate 
the gene signature of macrophages in the 
DICER-deficient mouse tumor models. 

Both approaches identified Let-7 
as one of the miRNAs responsible for 
reprogramming macrophages into tumor 
tolerators. Wet-lab experiments con-
firmed the finding: When the research-
ers restored Let-7 miRNA activity 
in DICER-deficient tumor macro-
phages—in which the absence of DICER 
causes a broad miRNA shutdown—the 
macrophages reverted to ignoring the 

tumor. Spurred by the new findings, the 
researchers are now working on using 
nanoparticles to block DICER or Let-7 
activity in tumor-associated macrophages.

Finding Neoantigens
Whereas De Palma’s experiments 

showed macrophages could be reinvigorated 
to lure killer T cells to tumor sites, existing 
cancer immunotherapy drugs spur T cells 
into action by targeting immune checkpoint 
molecules found on their surface. These 
therapies have brought lasting relief to for-
mer U.S. president Jimmy Carter and other 
patients with previously incurable cancers.

Key to developing these drugs was 
the discovery that a T-cell checkpoint 
molecule called PD-1 recognizes PD-L1 
proteins on the surface of some cancer 
cells and tumor-infiltrating immune cells, 
particularly macrophages. Interaction 
between these molecules creates a 
“stealth shield” for the tumor, prevent-
ing the immune system from seeing it, 
explains Richard Chen, MS, MD, chief 
scientific officer at Personalis, a Silicon 
Valley genomics company. Checkpoint 

In cancerous cells, checkpoint proteins, such as PD-L1 on tumor cells and PD-1 on T cells, help keep immune responses 

in check. The binding of PD-L1 to PD-1 prevents T cells from “seeing” the tumor cell, allowing the cancer to grow 

unchecked (left panel). Blocking the PD-1/PD-L1 interaction with an immune checkpoint inhibitor (anti-PD-L1 

or anti-PD-1) unshields the tumor cell so T cells can kill it (right panel). Source: National Cancer Institute. Printed 

with permission © 2015 Terese Winslow LLC, U.S. Govt. has certain rights. 
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inhibitors prevent those molecular interac-
tions and break the stealth shield, mak-
ing the tumor visible to immune cells. 

But there’s a vexing problem: 
Checkpoint blockade doesn’t work for 
many eligible cancer patients. Even when 
a drug succeeds in “unshielding” a tumor, 
there’s no guarantee a cell’s particular 
collection of tumor peptides will actu-
ally trigger an immune response. “Each 
tumor is unique and complex,” Chen 
says, and determining a tumor’s immu-
nogenicity poses a difficult problem.

To gauge which patients will respond 
to immunotherapy, Chen’s team is using 
bioinformatics and machine-learning 
approaches to probe their tumor’s genetic 
mutations and determine how the 
tumor is evading the immune system.

Tumor-specific peptides are a key 
determinant of immunogenicity. As tumor 
cells accumulate mutations, some give 
rise to tumor-specific mutant peptides, 
or neoantigens, that the immune system 
considers foreign. Studies have shown 
that tumors with more neoantigens 
stimulate stronger immune responses. 

Personalis has developed a platform 
called ACE ImmunoIDTM, which com-
bines DNA and RNA profiling to gauge 
a tumor’s mutations and neoantigen load. 
While existing assays can screen for cer-
tain proteins known to be important for 
immunogenicity, such as PD-1 and PD-L1, 
Personalis’ method achieves higher specific-
ity and sensitivity. The patented technology 
optimizes chemistry and probes to fill in 
common sequencing gaps in DNA and 
RNA. In addition, it uses computational 
algorithms to predict, from the sequenc-
ing information, which mutations could 
result in neoantigens that are likely to bind 
major histocompatibility (MHC) pro-
teins—the set of cell surface proteins that 
help the immune system recognize foreign 
molecules. Interaction with MHC is a key 
prerequisite for a neoantigen to be immu-
nogenic, Chen says, so people with MHC-
binding neoantigens are more likely to 
benefit from checkpoint blockade therapies.

The prediction algorithm uses a 

machine-learning approach that includes 
neural networks trained using experimental 
data on thousands of peptides that do or 
don’t bind well to MHC molecules. With 
enough input data, the machine-learning 
algorithm can learn to predict whether 
a new peptide is likely to bind to MHC. 
Strong neoantigens identified by this 
method could also help researchers design 
tumor-specific vaccines. “You’d have a com-
pletely personalized therapeutic,” Chen says. 

Similar tools are under development 
elsewhere. Researchers at the La Jolla 
Institute for Allergy and Immunology 
in California have created the Immune 
Epitope Database Analysis Resource 
(www.iedg.org), a collection of tools for 
predicting and analyzing immune epi-
topes in the context of T- and B-cell 
responses. Another group led by scientists 
at the Technical University of Denmark 
has developed NetMHC (http://www.
cbs.dtu.dk/services/NetMHC/), which 
uses artificial neural networks to estimate 
the affinity of user-submitted peptide 
sequences to specific MHC alleles.

Probing Transcriptomes
Other researchers are taking a dif-

ferent approach to understanding why 
checkpoint blockades work in some 
patients and not others. Perhaps, they say, 
it has to do with the specific nature of a 
tumor’s heterogeneity, including differ-
ences in the T cells that are present. Gene 
expression profiles of tumors as a whole 
can’t address that. “If you take tumor 
tissue and grind it up for sequencing, all 
you detect is a mixture of signals,” says 
Benjamin Izar, MD, an oncology fellow 
working with Levi Garraway, MD, PhD, 
at the Dana-Farber Cancer Institute, 
Boston, and at the Broad Institute of 
MIT and Harvard. “It’s hard to say 
where the signal came from and what 
it means in the context of the tumor.” 

That’s why Izar and Garraway teamed 
up with colleagues Aviv Regev and Itay 
Tirosh to perform single-cell RNA 
sequencing not just on cancerous cells but 
non-malignant types including immune 

cells and connective tissue from patient 
tumors. “We wanted a broad, unbiased 
reflection of what is actually in the tumor,” 
Izar says of their study published April 
2016 in Science. In total the team ana-
lyzed 4,645 cells in tumors collected from 
19 people with melanoma skin cancer. 
Some patients had never been treated 
for their cancer. Others had taken a 
drug designed to target melanoma cells 
with a specific mutation. Still others had 
received immune checkpoint inhibitors. 
The sequencing process yielded thousands 
of transcriptomes. The data were complex 
and noisy, says Izar. So they used various 
statistical and machine-learning meth-
ods to visualize and interpret the data. 

Several interesting features jumped 
out when the researchers analyzed the 
transcriptomes of T cells, whose pres-
ence and function at tumor sites has been 
shown to predict responses to immune 
checkpoint therapies. Many of the tumor 
T cells expressed markers of “exhaustion,” 
says Izar. Unlike normal cytotoxic T cells 
that help control cancer by recognizing 
key molecules on the surface of tumor 
cells, some T cells lose their fighting 
power, and this exhaustion is marked by 
transcriptional changes in specific genes.

Still, it can be hard to distinguish 
activated T cells from exhausted ones. 
Analyzing gene expression at the single-
cell level could help identify better mark-
ers for truly exhausted T cells because 
those might be the patients who will 
respond to immunotherapies, says Izar. 

In a paper published in August 2016 
in Genome Biology, another Boston 
team, led by X. Shirley Liu, PhD, at the 
Dana-Farber Cancer Institute, also used 
RNA-sequencing data to evaluate the 
clinical impact of immune cells in vari-
ous types of cancer. However, instead of 
directly measuring transcriptomes, the 
team analyzed published data from over 
10,000 RNA-sequencing samples across 
23 cancer types from The Cancer Genome 
Atlas. They developed a computational 
algorithm called TIMER (Tumor IMmune 
Estimation Resource) that estimates the 

Tackling  
Tumors
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tumors’ immune-cell composition and 
correlates the immune cells’ presence and 
gene expression with clinical outcomes. 
The analysis found, unexpectedly, that the 
abundance of CD8 cytotoxic T cells does 
not always correlate with expression of 
CTLA4, an immune checkpoint protein 
sometimes targeted in checkpoint blockade 
immunotherapies. The researchers think 
this might explain why some patients don’t 
respond to CTLA4-blocking treatments 
despite expressing high levels of CTLA4.

Though T cells and macrophages have 
been a big focus, other immune cells 
can also determine how well a patient 
responds to cancer immunotherapy 

drugs. Using a computational approach 
called CIBERSORT, researchers led by 
Stanford oncologist Ash Alizadeh char-
acterized the cell composition of around 
18,000 human tumors by surveying their 
gene expression profiles. Their analysis, 
reported in a 2015 Nature Medicine paper, 
found complex relationships between 22 
immune subset signatures and overall 
survival across 25 cancer histologies. For 
example, they found that people whose 
tumors contained high numbers of plasma 
cells (a type of immune cell) had a bet-
ter prognosis, while those with a high 
concentration of neutrophils (another type 
of immune cell) tended to have a worse 

outlook. The findings could be used to 
find new targets for cancer therapies—
or to help predict patients’ chances of 
responding to some existing treatments.

Using these and other diverse 
approaches, scientists hope to refine and 
identify additional molecular signatures in 
patient tumors to help predict responses 
to immunotherapies. But it won’t be 
easy. “It’s different from a cholesterol 
test where you measure one entity and 
you’re done,” Chen says. “When you’re 
talking about genomics-based diagnos-
tics there’s significant complexity in the 
informatics and sequencing. There are 
multiple dimensions to the problem.” 

The heterogeneity of the tumor microenvironment plays a crucial role in allowing cancer to grow and evade destruction. This image of a mouse model for HER2-

positive breast cancer uses a novel imaging technique called transparent tumor tomography that three-dimensionally illuminates the tumor microenvironment at 

a single-cell resolution. HER2 (green), Ki-67 (red), PD-L1 (purple), immune cells (yellow), and endothelial cells (cyan).  Source: National Cancer Institute \ Univ. of 

Chicago Comprehensive Cancer Center. Creator: Steve Seung-Young Lee.
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P
hysicians are forever recording 
information about their patients. 
They take vital signs, order lab 
tests and imaging, prescribe medi-

cations, check boxes to define patients’ 
diagnoses for billing purposes, and write 
or dictate narrative descriptions of each 
patient’s status. For the most part, all of 

this information goes into the patient’s 
electronic health record (EHR) where it 
remains untouched for any purpose other 
than billing or the patient’s next visit. 

These EHRs represent a vast untapped 
gold mine for improving patient care. 
“There is no other industry that doesn’t 
learn from its prior customers,” says 

Nigam Shah, MBBS, PhD, associate pro-
fessor of medicine at Stanford University. 

In clinical settings, EHRs can be 
mined to identify patients at high, 
medium, and low risk for various out-
comes, allowing healthcare providers to 
intervene proactively. For example: Who 
is likely to be admitted to the ICU or ER? 
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EHRs can also be used to personalize 
risk assessment. For example, someday, a 
clinician might be able to query a ware-
house of EHR data to find how other 
patients highly similar to one of theirs 
fared when given various treatments. 

EHRs can also be used to predict 
differences in how diseases progress. 
For example: When will pre-diabetes 
progress to full-onset diabetes? Or 
when will an aplastic mole prog-
ress to full-blown melanoma? 

Applying machine learning to EHRs 
for the benefit of patients has its chal-
lenges. Medical record systems vary 
among institutions, are not standardized, 
and are constantly evolving; diagnos-
tic codes used for billing purposes are 
often unreliable; and narrative descrip-
tions in natural language are hard for 
computers to interpret. Moreover, 
privacy concerns limit access to EHRs; 
datasets from some institutions may 
be too small to be useful, especially 
for rare diseases; and when datasets 
are larger, the statistical challenges 
exceed an individual clinician’s grasp. 

There are also methodological hurdles 
to cross. “There are probably a dozen 
widely used machine-learning algo-
rithms and thousands of variations,” 
says David Page, PhD, professor of 
biostatistics and medical informat-
ics at the University of Wisconsin’s 
School of Medicine and Public Health. 
“We try to be very open-minded about 
what method would work best.”

And then there are the economics of it. 
Institutions like Stanford University, Shah’s 
employer, may be willing to foot the bill 
for a data warehouse full of EHRs with-
out concern for the financial return, but 
the larger healthcare industry would have 
to pay for EHR work using patient-care 
dollars—and would need to show benefit 
to specific patients to collect those funds. 
“We haven’t figured that out yet,” Shah 
says. “How do we demonstrate a return on 
investment when the people who stand 
to benefit have no skin in the game?”

Despite the challenges, research-
ers can point to a number of promising 
projects that are either already benefiting 
patients or soon will be. “It’s phenomenal 
to see the work get to this point,” says 

Jenna Wiens, PhD, assistant professor 
of computer science and engineering at 
the University of Michigan. “We talk all 
the time about leveraging EHR data to 
produce actionable knowledge, but in 
practice it can be really hard to do. I’m 
really excited to see where it leads.” 

Improving the EHR 
to Improve Care 

For EHRs, like other databases, 
garbage in will produce garbage out: If 
doctors and nurses aren’t entering data 
accurately, or aren’t keeping the records 
up-to-date, patient care could suffer. 
Moreover, narrative notes in EHRs often 

hide information that could be use-
ful if it were more structured. So some 
researchers are using machine learning to 
improve the accuracy and structure of the 
EHR—which in turn makes the EHR 
more valuable for machine learning. It’s 
a great way to tackle some low-hanging 
fruit, says David Sontag, PhD, assis-
tant professor of computer science and 
data science at New York University.

About seven years ago, Sontag, a spe-
cialist in machine learning, began work-
ing with Steven Horng, MD, associate 
director in the division of emergency 
informatics at Beth Israel Deaconess 
Medical Center in Boston, Massachusetts. 
They wondered if machine learning could 
be used to structure the patient’s chief 
complaint as it is entered in the EHR 
by emergency room (ER) triage nurses. 
The chief complaint is typically a brief, 
free-text summary of the patient’s condi-
tion. For example, it might be “chest pain,” 
“hit by car,” “pneumonia,” or “uncontrolled 

bleeding.” It is often the first thing the ER 
physician sees. This important information 
could be valuable to record in a structured 
form, but a drop-down menu of chief 
complaints would be very long and require 
too much time from nurses in a hurry. 

So, using data for 200,000 patients who 
had been to the ER in the past, Sontag 
and Horng, along with Sontag’s PhD 
students Yacine Jernite and Yoni Halpern, 
trained a machine-learning algorithm to 
identify what the chief complaint should 
be for new patients. Implementing the 
algorithm in an ER setting required that 
nurses write a 20- to 40-word triage 
assessment of the patient, in addition to 
taking vital signs. The machine-learning 

algorithm then uses that information 
to predict and auto-complete a struc-
tured entry for the chief complaint. The 
algorithm relies on a clearly defined 
ontology of many hundreds of possible 
chief complaints. The system, which has 
been running live for about three years, 
is much loved by the nursing staff at 
Beth Israel Deaconess Medical Center. 
They complain immediately whenever 
the system goes down, Sontag says. And 
the quality of the chief complaints has 
improved, judging from how rarely the 
nurses and physicians override the algo-
rithm’s chief complaint suggestions, he 
says. Moreover, with the chief complaint 
recorded as structured data, it becomes 
possible to apply more advanced machine-
learning approaches to the data—ones 
that might seek to classify ER patients 
at highest risk of death, for example.

The approach can be used to improve 
the structure of EHRs in other contexts 
as well. For example, Sontag’s group used 
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machine learning to predict what should 
be added to or removed from the EHR’s 
patient problem list. This list of a patient’s 
current health issues provides valuable 
contextual information when a patient 
presents with a new problem, but it is 
hard to maintain and keep up to date. 

 “These are simple examples,” 
Sontag says, “And they demonstrate 
that even the simplest of machine-
learning methodologies can have a 
significant impact on healthcare.” 

Taking these efforts further, Sontag 
has a vision to create a foundation for 
the next generation of EHRs. To be able 
to deduce a patient’s past and present as 
well as predict the future requires struc-
tured information that doesn’t exist in 
current EHRs. So Sontag wants to use 
machine learning to automatically convert 
unstructured data into structured data. 
It’s not an easy task. Machine-learning 
algorithms typically require training data 
that has been labeled by experts. That’s 
hard to come by in healthcare settings, 
Sontag says, and it often doesn’t transfer 
well from one institution to another. So 
Sontag came up with a solution he calls 
the “anchor and learn framework.” It uses 
prior medical knowledge known to an 
expert to identify an anchor in the EHR, 
(e.g., the fact that seeing metformin and 
multiple HbA1c measurements means 
someone is a diabetic) and then uses that 
anchor as a basis for learning. Experts 
are needed only for determining the best 
anchors—not for labeling all of the data. 

“It’s not doing diagnosis,” Sontag says. 
“We’re not finding something someone 

doesn’t already know. We’re just getting 
a piece of knowledge that’s important 
into a structured form.” For example, if a 
patient who is being prescribed antibiot-
ics is from a nursing home—a context 
where antibiotic resistant bacteria often 
develop—the EHR could flag that and 
then offer a popup asking “are you sure 
the patient doesn’t have antibiotic resistant 
bacteria?” But the EHR can only do that 
if being “from a nursing home” is known. 
And Sontag’s system can figure that out.

Sontag is also looking into using 
the anchor framework to predict future 

events. For example, researchers can look 
at people who died and then project 
backward to identify key characteris-
tics in their EHRs several hours or days 
earlier. These characteristics could then 
be used as anchors to predict a cur-
rent patient’s likelihood of dying. 

Individual Risk Stratification:  
Predicting Chance 

of Infection 
In hospital settings, patients often 

face an amplified risk of infection either 

Saria and her colleagues compared routine screening 

procedures to their machine learning–based TREWScore 

predictions of septic shock during the 120 hour period 

before septic shock onset (A) and of sepsis-related organ 

failure during the 48 hours before it occurred (B). Each 

patient in graphs A & B is represented by a single line (C), 

with colors reflecting the point at which either routine 

screening (green) or the TREWScore (orange) or both 

(purple) predicted septic shock. Thus the quantity of 

orange in the graphs reflects the success of the TREWScore 

compared with the quantity of green (routine screen-

ing). From KE Henry, DN Hager, PJ Pronovost, S Saria, A 

targeted real-time early warning score (TREWScore) for 

septic shock, Science Translational Medicine 7:299:122 

(2015). Reprinted with permission from AAAS.
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because they have an underlying disease, 
their immune systems are compromised, 
or they've been overtreated with antibiot-
ics, creating a hospitable environment for 
antibiotic-resistant bacteria. Predicting 
which patients are most vulnerable could 
allow healthcare providers to intervene 
sooner to prevent or control infections. 
Already researchers are using EHR data 
to predict two of the most challenging in-
hospital infections: sepsis and C. difficile.

Sepsis occurs when the body’s 
response to infection begins to shut 
down the body’s organ systems. It’s 
associated with 20 to 30 percent of all 
hospital deaths each year in the United 
States—that’s about 750,000 people. 
Automated screening tools have been 
used to predict that a patient is expe-
riencing sepsis, but none can predict it 
in advance. “The question was, ‘How 
can you detect sepsis without hav-
ing to suspect it?’” said Suchi Saria, 
PhD, assistant professor of computer 
science at Johns Hopkins University, 
at the Big Data in Biomedicine 
Conference at Stanford University. She 
and her colleagues set out to deter-
mine whether EHR–based predic-
tions could outperform the standard 
of care. They developed a score—the 
TREWScore—that relies on con-
tinuous sampling of the EHR. If the 
score crosses a certain threshold, it is 
highly predictive of septic shock.

“Using routinely collected data we 
were able to predict individuals who 
experience septic shock on average 25 
hours early,” Saria said. “That’s a huge 
window for intervention.” The work 
was published in Science Translational 
Medicine in August 2015. Further, she 
adds, “TREWScore is only a start-
ing point. A lot more can be done 
to target TREWScore to the indi-
vidual.” Her team is actively working 
on this and she already sees promise.

Wiens and Erica Shenoy, MD, PhD, 
of Massachusetts General Hospital 
(MGH) took on a different problem that 
plagues hospital inpatients: C. difficile 
infection (CDI), which causes diarrhea 
and colitis. CDI is often caused by anti-
biotic treatment that eliminates the good 
bacteria in a person’s gut, leaving them 

vulnerable to the C. difficile bacterium. 
Like Saria’s sepsis work, Wiens’s CDI 

work generates a score for the probability 
that a patient will test positive for the 
infection at a later time during the hospi-
tal visit. Her algorithm uses two model-
ing approaches jointly: a time-invariant 
predictive model that pools data over sev-
eral days prior to a positive C. difficile test, 
as well as individual daily models that 
evaluate which parameters are important 
on each day leading up to the diagnosis. 
“Other approaches assume a pattern,” 
she says. “We just let the data speak.” 

The work, which was published in 
the Journal of Machine Learning Research 
in 2016, identified both expected and 
unexpected risk factors that contrib-
uted to CDI. Patients taking common 
antimicrobials or proton pump inhibi-
tors were already known to be at high 
risk for CDI. More surprising, Wiens 
says, were factors like location in the 
hospital and the use of opioids. “It’s not 
clear if that’s causal,” Wiens says, “But 
it’s a hypothesis that can be tested.” 

The CDI risk score will be applied 
next at MGH, and will automatically 
produce a risk estimate for each patient 
every day at midnight. Wiens and her 
colleagues are planning a randomized 
controlled trial to esti-
mate the poten-
tial impact of 

risk-driven interventions. 
The planned study will screen for all 
patients that are at high risk for CDI, but 
only intervene in a subset of that group. 
Wiens and her colleagues will then mea-
sure the incidence and severity of CDI 

for the two groups and will assess any 
impact on antimicrobial use and costs. 

Modeling each inpatient hospital 
day and then combining it with a more 
general model, as Wiens and her col-
leagues have done for CDI, could prove 
useful for predicting the progression 
of other diseases as well. The approach 
could also generalize more broadly.  
“You could look at longer time scales 
to capture how risk factors change over 
a patient’s lifetime,” Wiens notes.

Another important direction for the 
future: combining EHR data with omics 
data, such as the microbiome. “We’re 
working on that right now,” Wiens 
says. “How much can we predict based 
on the EHR and microbiome sepa-
rately versus by combining the two?” 

The Informatics Consult:  
Data Analysis for One 

Patient at a Time
One of Shah’s goals is to develop a 

medical specialty he calls the “informat-
ics consult.” Using machine learning 
and an EHR warehouse, an informat-

ics expert would be available to advise 
physicians about the prognosis or treat-
ment options for a particular patient. And 
clinicians would request a consult just 
as they do from other medical special-
ists, such as pathologists or radiologists. 
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To launch a consult, the clinician 
would describe the patient—Shah 
posits a 55-year-old Vietnamese woman 
with asthma and moderate hyperten-
sion—and ask for an appropriate treat-
ment intervention. The clinician knows 
that an antihypertensive medication is 
appropriate, but which one works for 
middle-aged asthmatic females who 
also happen to be Vietnamese? The 
informatics consultant would then use 
the EHR to identify similar patients 
and the most effective treatments for 
them. If the EHR system contains only 
five people who match that patient, the 
consultant might relax the age or ethnic-
ity conditions to get a bigger sample. 

“It makes intuitive sense that being able 
to make decisions using similar patients 
would lead to better decisions,” Shah says, 
“but that’s still a hypothesis.” He plans to 
test that hypothesis in the coming year. 
The initial pilot will include a limited 
number of clinicians who will send a 
consult request over phone or email. “It’s 
not fully automated and black-box yet,” 
Shah says. “People might not trust it; and 
we’re still not at a stage where, technically, 
we can shrink wrap it and make it into a 
button.” But the process would be semi-
automated in the sense that the informat-
ics expert gets the question, uses a search 
engine to find a set of similar patients, 
and then—depending on the question—
applies an appropriate statistical method 
to the EHR data. “There has to be a 
human in the loop,” Shah says. But in 
two to four hours, the consult would 
generate a predesigned report. “That’s 
my hope for the first pass,” Shah says. 

After completing the pilot, they’ll 
refine the procedure and implement 
a randomized trial. Some physicians 
will have access to the consult and oth-
ers won’t. After a year, Shah’s team will 
look for differences in outcomes such 
as the cost of care; speed of recovery; 
and patient well-being and satisfaction

Predicting  
Disease Progression

One of the toughest questions for 
clinicians to answer is: “How will my 
disease play out?” So Saria and her 

colleagues decided to experiment with 
establishing a computational framework 
for predicting disease trajectories in 
chronic, complex diseases using EHR 
data. They settled on scleroderma 
as an interesting model disease. 
Scleroderma is an autoimmune 
disease that afflicts about 300,000 
people in the United States. 
Some people have localized dis-
ease—hardened areas of skin in 
one area, perhaps; others have 
systemic disease. Systemic 
disease can progress rapidly or 
slowly, and it may affect the 
lungs, skin, gastrointestinal 
tract or kidneys to varying 

extents. For physicians, it can be hard to 
know what treatments are appropriate. 

Lung disease is the leading cause 
of death among scleroderma patients 
but the decline in lung function is 
unpredictable. So Saria’s team honed 
in on predicting the progression of 

scleroderma-related lung disease using 
a measure of lung health called PFVC 
(percent of predicted force vital capacity). 
Saria’s team trained a predictive model 

using data on 672 individuals collected 
over a period of 20 years in the Johns 
Hopkins Scleroderma Center patient 
registry. Using these data, they were able 
to uncover several new subtypes of lung 
disease progression. As time passed, the 
team could also dynamically personalize 
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predictions of lung disease progres-
sion for specific individuals. Saria has 
also recently shown how to account for 
progression in trajectories across many 
different organ systems in scleroderma, 
offering the possibility of individualizing 
management of systemic diseases that, 
like scleroderma, affect more than just 
one organ. Saria says the approach could 
be applied to other complex diseases 
such as asthma, autism, and cardio-
obstructive pulmonary disease (COPD).

One-Button Predictions: 
Forecasting ALL Diagnoses 

Rather than focus on individual 
disease risks, Page and his colleagues at 
the Center for Predictive Computational 
Phenotyping (CPCP), a Big Data to 
Knowledge (BD2K) Center of Excellence 
at the University of Wisconsin, are 
building a predictive model for every 

diagnosis code at a press of the button. 
The work relies on a high-throughput 
computing system called HT-Condor 
and the Marshfield Clinic’s EHRs 
for more than a million patients. 

To train their machine-learning 
algorithm, Page’s team used a statistical 
approach called random forests—essen-
tially a series of decision trees that identify 
the most informative features for each 
diagnostic code, then the next most 
informative and so on. Given a set of 

current or new patients, the trained system 
calculates the probability each person will 
be assigned each diagnostic code within 
the next six months, Page says. The system 
works well even for predictions six months 
out, though some diseases can be predicted 
more accurately than others, he says. 

Page hopes that the Marshfield Clinic’s 
EHRs will start to use the system, at 
least for the most accurately predicted 
diseases. Perhaps it could offer physi-
cians a pop-up alert if a patient crosses a 
threshold of risk for particular diagnoses. 
At the same time, he’d also like to do a 
careful test of whether physicians actu-
ally rely on the pop-ups. “The hope is 
that the prediction takes into account 
more features than the doctor can in one 
visit and can improve care,” Page says. 

But the work could also be useful in 
other ways—to help hospitals evalu-
ate how well they are doing at treat-
ing high-risk patients system-wide, for 
example; or to pick potential cohorts 
for trials of preventive procedures; or to 

discover unknown long-term effects 
of treatments. “It could put things 

on the radar that aren’t on there 
yet,” Page says. “We’re still at the 
point now where there’s lots of 
interest and excitement about 
the possibilities for predictive 
models in the clinic, but very 
little translation. This work 
could speed up that process.” 

Rather than using ran-
dom forests to evaluate each 

patient’s risk of every disease, 
a team of researchers working 

with Joel Dudley, PhD, assistant 
professor of genetics and genomic 

Sciences at the Icahn School of Medicine 
at Mount Sinai in New York City, used 
neural networks to extract a “deep patient 
representation” (called Deep Patient) 
from 700,000 patient records in the 
Mount Sinai Health System’s data ware-
house and then tested its ability to pre-
dict the likelihood of 78 diseases in more 
than 70,000 patients. Shah, who did the 
initial data processing for the project, says 
Deep Patient created complex features 
out of the words mentioned in patient 
records. “It’s a representation of the EHR 
data for risk stratification,” Shah says. 

Dudley’s team found that Deep Patient 
outperformed a number of other predic-
tion methods at predicting future assign-
ments of disease codes. The research, 
which was published in Scientific Reports 
in May of 2016, could also be useful for 
personalizing prescriptions or recom-
mending treatments, the paper suggests. 

But neural nets have a downside: 
They don’t give users an intuitive sense 
of what’s going on. That’s because they 
are based on finding hidden features in 
the data. So using Deep Patient, physi-
cians might reliably tell patients their 
risk of a disease, but they wouldn’t be 
able to point to potential reasons why. 

Getting at Causation

It would be nice to go beyond pre-
dictions based on similarity to predic-
tions based on causality, Sontag says. 
“The machine-learning community has, 
for the most part, ignored this causal 
inference question in recent years, 
but in the healthcare setting it’s the 
most important question,” he says. 

Sontag and his team, including PhD 
student Rahul Krishnan and postdoc 
Uri Shalit, are currently developing 
several statistical approaches to discover-

ing causal relationships. 
One, using what’s called a 
deep Kalman filter, is a model of 
disease progression that takes into 
consideration how drugs or treat-
ments affect disease progression. The 
approach would allow researchers to ask, 
for example, “What would have hap-
pened to this patient if he/she had had 
Treatment B instead of Treatment A?” 
Sontag says. He’s getting initial results 
now and says: “I view this type of work 
as the future of precision medicine.” 
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W hen it comes to what 
kills people, Nurture 
trumps Nature: 
Chronic diseases with 

overwhelmingly environmental (rather 
than genetic) causes are responsible for 
the deaths of two-thirds of the world’s 
population. Yet the investment made in 
unraveling the environmental side of the 
health equation pales by comparison to the 
investment in human genome research.

“In the past 20 years, a lot of effort 
and funding have pointed toward genome 
research,” says Paolo Vineis, PhD, profes-
sor of medicine and chair of environmental 
epidemiology at Imperial College London. 
“Now, people are suggesting that a similar 
effort should be put into exposure research, 
and also that exposures should be inves-
tigated systematically as has been done 
for the genome, such as with Genome-
Wide Association Studies, or GWAS.” 

Though we know some of the big-
gest players in chronic diseases—air 
pollution, smoking, poor diet, and lack 
of exercise—an estimated 50 percent 
of the environmental drivers remain 
unknown. “I’m not going to argue that 
diet or physical activity or smoking don’t 
have a role to play,” says Chirag Patel, 
PhD, assistant professor of biomedical 
informatics at Harvard University. “But 
it behooves us to explain more of the 
variation than can be explained by clas-
sical environmental factors. We need to 
look beyond the proverbial lamppost.” 

Environment-disease research suffers 
from the same problems that gene-disease 
research did 20 years ago: Individual labs 
study hand-picked risk factors one at a 
time in small studies with inconsistent 
methodologies; and they are incentivized 
to report positive findings. The result: a lit-
erature rife with spurious findings. “There’s 
a now-famous number being punted 
around in genetic epidemiology that, prior 
to GWAS, over 95 percent of the findings 
from candidate gene studies—that is, your 
favorite gene in connection with a trait—
are false,” Patel says. In a 2011 review, 
researchers found that only 13 of 1,151 
purported loci-phenotype associations for 
eight conditions were replicated in large-
scale studies. It took GWAS and related 
approaches—which consider a multitude of 
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genes simultaneously in an unbiased, stan-
dardized way—to clean up this literature. 

We need a similar revolution in the 
study of environment-disease associations, 
Patel and others say. In 2005, Christopher 
Wild, PhD, now director of the 
International Agency on Cancer Research, 
coined the term “exposome” as a call for 
high-throughput, systematic approaches 
to studying how the environment impacts 
health. Echoing this call, Patel and others 
coined the term EWAS, or Environment-
Wide Association Study, to encourage 
researchers to apply GWAS–like methods 
to study health-environment associations.

The exposome encompasses the entirety 
of a person’s exposures from birth to death. 
Thus, the first challenge is how to measure 
it. Fortunately, technological advances are 
making it possible to measure the expo-
some at higher resolutions and on larger 
scales than ever before. Metabolomics 
measures the chemical ghosts of expo-
sures in our blood; wearable sensors and 
smartphones track where we go, what 
we breathe and eat, how we move, and 
how we feel; social media sites amass 
records of our moods and social con-
nections; electronic health records store 
our clinical, personal, and demographic 
attributes; and geographical information 
systems and survey data reveal the wider 
societal factors that influence our health. 

The sheer volume and complexity of 
these data are overwhelming. According 
to Gary Miller, PhD, professor of envi-
ronmental health at Emory University 
in Atlanta, Georgia, a geneticist on his 
staff once commented that after he saw 
how complicated the exposure data were, 
she felt like “a wimp” for studying genet-
ics. Whereas genomic data consist of 
stable linear sequences, exposome data are 
heterogeneous, non-linear variables that 
change over time and space. Dense webs of 
correlation among environmental variables 
make it hard to tease out causation. And, 
due to the highly personal nature of the 
data, privacy and security concerns abound. 
Exposome researchers can draw heavily 
on the bioinformatics tools developed for 
GWAS, but to fully realize the promise of 
the exposome, they will need new tools for 
storing, integrating, and analyzing the data. 

 “It’s daunting. It’s definitely hard,” 

Miller says. But it’s also an opportunity 
for bioinformaticians and computational 
biologists, he adds. “For people who like 
wrangling with data, the exposome offers 
some great challenges.” This article reviews 
recent progress in exposome research and 
the challenges that remain for studying 
everything from the chemicals in our bod-
ies to the quality of our neighborhoods.

WHAT’S INSIDE: 
METABOLOMICS

External exposures leave chemical 
traces in our bodies. These can provide a 
convenient window into how those expo-
sures affect health. “Exposures are inher-
ently chemical in nature,” says Stephen M. 
Rappaport, PhD, professor of environ-
mental health sciences at the University 
of California, Berkeley. “Anything that 
causes a health effect is either a chemi-
cal or is mediated through chemicals.” 
Food, drugs, and pollutants leave behind 
metals and small molecules in the blood. 
“Even psychosocial stress produces 
hormones and other biologically relevant 
molecules in the body,” Rappaport says. 

Fortunately, researchers who want to 

perform large-scale exposome studies can 
access troves of specimens and associ-
ated health outcome data that have been 
collected and archived by epidemiologic 
studies and national surveys. In 2010, 
when Patel was a doctoral student at 
Stanford, he and his mentors performed 
the first proof-of-principle EWAS using 
publicly available data from the National 
Health and Nutritional Examination 
Survey (NHANES), which includes data 
on chemicals in the blood and urine of 
thousands of participants. When they 
compared 266 chemicals across partici-
pants with and without type 2 diabetes, 
they turned up four hits: the pollutants 
polychlorinated biphenyls (PCBs) and 
heptachlor epoxide and the nutrients 
vitamin E and beta-carotene (the latter 
was inversely associated with diabetes). 
Follow-up studies are needed to determine 
if any of these factors is causally related to 
diabetes, Patel stresses. “But by taking a 
data-driven, agnostic, unbiased approach, 
EWAS leads to a more reproducible list of 
hypotheses to prioritize for further study.” 

Rappaport concurs: “All we want to 
do with EWAS is to sort through the 
thousands of chemicals to which people 

INTO THE UNKNOWN: Though we know many of the environmental risk factors for chronic diseases, about half 

remain unknown. This chart shows the percent of total global chronic disease deaths that are believed to be 

explained by each factor, according to 2010 data from the World Health Organization. Reprinted from Rappaport 

SM, Barupal DK, Wishart D, Vineis P, Scalbert A. 2014. The blood exposome and its role in discovering causes of 

disease. Environ Health Perspect 122:769–774.
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are exposed during life and identify those 
few exposures that may be causes of 
disease. Then epidemiologists can fol-
low up with focused studies to establish 
causality. Thus, the exposome paradigm 
begins with a data-driven EWAS to 
generate hypotheses and ends with tests 
of these hypotheses in subsequent stages.”

Patel’s team had developed publicly 
available software for EWAS (http://
www.chiragjpgroup.org/exposome-
analytics-course/) that combines off-the 
shelf GWAS tools with cutting-edge 
machine-learning techniques. “There’s 
nothing novel in the methods. Rather, we 
are taking existing methods that statisti-
cians and informaticians have developed 
for different domains and introducing 
them to people doing exposure sci-
ence and epidemiology,” Patel says. 

Exposome researchers dream of a day 
when there is a cost-effective exposome 
chip akin to the SNP (single nucleo-
tide polymorphism) chips that enabled 
GWAS studies. “If you could measure 
even 500 chemicals consistently in human 
plasma, and you could do it in a cost-
effective way at the scale of a GWAS, you 
would start finding things,” Miller says. 

To look for novel triggers of disease, 
many exposome researchers are also wid-
ening their search beyond known chemical 
markers. They are turning to untargeted 
metabolomics—using mass spectrometry 
to explore the vast landscape of unknown 
chemicals in the blood. Platforms can now 
measure 100,000 small molecules from 
a few microliters of blood in 20 minutes, 
Rappaport says. The catch: Mass spec-
trometry just gives signatures of chemicals, 
or spectral peaks; so, once researchers have 
fished out the most interesting peaks, 
they still need to work out the identity of 
the chemicals. Spectral reference librar-
ies exist, but they cover only a small 
fraction of the metabolome, so chemi-
cal identification remains a challenge. 

Rappaport’s lab is nevertheless taking 
this approach. To ensure they are picking 
up causes rather than effects of disease, 
they use archived samples from cohorts 
of people who were healthy at the time of 
the blood draw. For example, to look for 
clues to childhood leukemia, Rappaport’s 
team is using neonatal blood spots 

collected on all babies born in California 
since the mid-1980s. By comparing the 
metabolomic profiles of 1,000 babies who 
later developed childhood leukemia with 
those of 1000 comparable controls, they 
hope to identify possible pre-natal causes 
of leukemia. They are also looking for 
evidence of exposure to damaging reactive 
molecules by measuring telltale alterations 
of the blood protein serum albumin (called 
adductomics). “Adducts from albumin are 
interesting because they stick around for 

a month. So we’ll get a picture of what 
babies were exposed to during the month 
preceding delivery,” Rappaport says. 

It’s too early to know what Rappaport’s 
study will turn up. But the power of the 
metabolomic approach is illustrated by a 
series of studies from the Cleveland Clinic, 
including 2010 and 2013 papers in Nature 
and the New England Journal of Medicine, 
respectively. Researchers compared stored 
blood samples from 150 people who 
developed a heart attack or stroke with 
150 age and gender-matched controls. 
Following up on the strongest signals 
from mass spectrometry, they uncovered 
a key metabolic pathway: When we eat 
lecithin—a fatty acid found in meat and 

eggs—bacteria in our guts convert the fat 
into trimethylamine N-oxide, or TMAO. 
Animal studies showed that TMAO clogs 
arteries. And subsequent human studies 
showed that individuals with high levels of 
TMAO are 2.5 times more likely to have 
major cardiovascular events (heart attack, 
stroke, or death) than those with low 
levels. The American Heart Association 
and American Stroke Association listed 
TMAO as one of the top 10 advances in 
heart disease and stroke science for 2013. 

“If their hypothesis is correct, I think we’re 
going to see that this has a major impact 
on how people diagnose and treat heart 
disease in the future,” Rappaport says. 

Success stories like this have been lim-
ited, however, due to the lack of informat-
ics infrastructure. Exposome initiatives in 
Europe and the United States are building 
infrastructure such as spectral reference 
libraries, shared data platforms, and analysis 
tools. For example, Vineis leads a consor-
tium of 12 European institutions, called 
EXPOsOMICS (http://www.exposo-
micsproject.eu/), while Miller leads The 
Emory Health and Exposome Research 
Center: Understanding Lifetime Exposures 
(HERCULES, http://emoryhercules.com/). 

THE EXPOSOME: The exposome encompasses the entirety of a person’s exposures from birth to death, including 

internal exposures such as gut bacteria, lifestyle choices such as smoking, and social determinants such as poverty. 

Reprinted from M Vrijheld, The exposome: a new paradigm to study the impact of environment on health, Thorax 

69:876-878 (2014) with permission from BMJ Publishing Group Ltd.
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HERCULES hosted the first-ever expo-
some course this past June, which trained 
diverse researchers to collect, integrate, and 
analyze metabolomics and other omics data. 

WHERE WE GO 
AND WHAT WE DO: 

PERSONAL SENSORS 
Internal markers provide clues to the 

exposome, but they are still several steps 
removed from the exposures themselves. 
“We’re trying to prevent that exposure 
in the first place. If you wait until it’s 
in the body, it’s too late to see where it 
occurred and where one could intervene,” 
says Jacqueline Kerr, PhD, associate 
professor of family medicine and public 
health at the University of California, 
San Diego. Internal markers also capture 
just a single moment in time. In con-
trast, wearable sensors allow exposome 
researchers to quantify external exposures 
with unprecedented precision, and to 
pinpoint where and when they occur. 

For example, air pollution can be 
crudely estimated from a person’s home 
address—by referencing data from local air 
monitoring stations. But two people who 
live in the same vicinity may be exposed 
to disparate pollution levels due to dif-
ferences in their indoor environments, 
places of work, and modes of transporta-
tion. “All these studies are being done 
on people’s home addresses. But where 
we live is not what we’re exposed to,” 
Kerr says. Wearable air pollution sensors 
offer a minute-to-minute accounting. 

To illustrate the importance of individ-
ual-level monitoring, Geoffrey Jacquez, 
PhD, professor of geography at the State 
University of New York at Buffalo, points 
to a study in which researchers outfit-
ted children with personal air pollution 
monitors. There was a surprising spike in 
pollution levels at the end of each school 
day—it turns out that children sitting on 
idling school buses were breathing in large 
amounts of exhaust. From this realiza-
tion, policy makers came up with an easy 
solution: Close the doors on idling buses. 
Stationary sensors on the tops of buildings 
could not have detected this health threat. 

Personal sensors can also measure UV 

light, humidity, temperature, and noise. 
But most sensors remain too bulky and 
costly to deploy on the thousands of par-
ticipants needed for EWAS–type studies. 
For example, one of the largest studies to 
deploy personal monitors for air pollution 
is EXPOsOMICS, which involved just 
a few hundred volunteers wearing back-
packs equipped with ultra-fine particle 
sensors. But because the EXPOsOMICS 
volunteers were sampled from other large 
cohort studies in Europe, Vineis’ team 
was able to leverage data for the smaller 
subsample (age, county of residence and 
job, for example), to predict the air pol-
lution exposures of the larger group. 

GPS technology can also provide 
detailed exposure profiles. GPS-enabled 

smartphones can track exactly when 
and where a person travels throughout 
the day. “It’s only quite recently that 
the technology has been good enough 
that we can do that with some confi-
dence,” says Clive Sabel, PhD, profes-
sor of quantitative geography at Bristol 

University in the United Kingdom. 
People’s spatial-temporal paths (also 
called “space-time cubes”) can be inter-
sected with spatial-temporal maps of 
environmental hazards—such as particular 
pollutants, radon, or even the density of 
liquor stores or fast food restaurants—to 
quantify individual exposures, he says. 

Besides the physical environment, 
smartphones and personal monitors also 
measure individual behaviors, such as 
sleep, exercise, and diet. Jacquez and Sabel 
coined the term “behavome” to draw 
attention to these factors, which are at 
least partly in our control. Accelerometers 
count steps and sleep times; heart rate 
monitors gauge exercise intensity; 
smartphone cameras snap photographs 

of food to provide an accurate account-
ing of dietary intake. All these data can 
then be overlaid with GPS data to learn 
about context—such as which loca-
tions are most conducive to exercise. 

NHANES has collected accelerometer 
data on thousands of participants since 

SCANNING THE EXPOSOME: Environment-Wide Association Studies (EWAS) systematically scan the exposome for 

environment-disease links in the same way that Genome-Wide Association Studies (GWAS) systematically scan the 

genome for gene-disease links. Here, a Manhattan plot reveals significant associations between type 2 diabetes and 

certain pollutants (PCBs and dioxins, for example), as well as the nutrient y-tocopherol (vitamin E). The nutrient beta-

carotene was inversely related to the disease (i.e., seems to protect against it). Reprinted from Patel CJ, Bhattacharya J, 

Butte AJ (2010) An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus. PLoS ONE 5(5): e10746.  
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2003. But large-scale exposome studies 
using behavior trackers remain rare. Since 
many technologies have only become 
available recently, scientists are still testing 
their usability and accuracy. “We’ve spent 
so much time investigating the reliability 
of the devices,” Kerr says. Researchers are 
also grappling with how to deal with the 
quantity of data. NHANES has seven 
terabytes worth of accelerometer data, 
including 150 million data points per per-
son. Besides issues of storage, it’s unclear 
how to process such data. How do we 
extract meaning out of 150 million data 
points—do we look at averages, slopes, 
standard deviations, or more complicated 
statistical measures? Two of NIH’s Big 
Data to Knowledge (BD2K) centers—The 
Mobilize Center at Stanford and Mobile 
Sensor Data-to-Knowledge (MD2K) cen-
ter—are grappling directly with this issue 
(See BCR story: “Wearing Your Health on 
Your Sleeve”). Privacy is another con-
cern. Kerr outfits study participants with 
personal cameras, which end up photo-
graphing people who are not involved in 
the study. “Because we have that type of 
information, we have to handle it in a very 
secure way. We have to be very careful 
about our ethical framework,” Kerr says.

Exposome researchers are also hoping 
to tap into the massive amounts of per-
sonal health data being collected outside 
of mainstream research. Twenty percent 
of Americans own a health wearable, such 
as a fitness band or smartwatch. If just 
a small fraction is willing to share these 
data, this translates to huge sample sizes. 
Many challenges in using and access-
ing these data remain, however. For one 
thing, people who are willing to share 
their data tend to be very different from 
the average American. “We’ve looked at 
typical journeys that you might be able to 
get from Strava, the GPS-based biking 
system. And they look nothing like the 
typical journeys that we get in our study 
participants,” Kerr says. “The data prob-
ably don’t represent a lot of the under-
served groups that we’re trying to reach.” 

Also, the commercial companies that 
own the data are often unwilling to share, 
Jacquez says. He hopes to see more “ben-
efit corporations,” or “B-corporations” set 
up to sell these devices. B-corporations 

blend traditional for-profit and non-profit 
business models—they make money, but 
are also committed to serving society. Such 
companies could make user-generated data 

freely available to research scientists. “This 
would be a model for people sharing their 
data for the greater good,” Jacquez says.

HOW WE FEEL  
AND RELATE:  

ELECTRONIC 
FOOTPRINTS

The exposome encompasses a wider 
set of psychological, social, and behavioral 
variables that include stress, subjective 
well-being, personality traits, resilience, 
social connectedness, and social support. 
It would be a mistake to neglect these 
risk factors, says Nancy Adler, PhD, 
professor of medical psychology at the 
University of California, San Francisco. 
“The physical environment is concrete 
and it is related to health, but the effect 
sizes are small. The associations for some 
of the social and behavioral variables are 
actually more powerful.” In one study, 
her team showed that social isolation 

predicted mortality as well as high 
cholesterol and high blood pressure. 

Constructs such as stress and social 
isolation may seem “squishy” and hard 

to pin down, but we have well-validated 
instruments for measuring them from 
social science and psychology. “We know 
what the factors are, and we know how 
to measure them with self-report,” says 
Elissa Epel, PhD, professor of psychia-
try at the University of California, San 
Francisco. The ability to measure these 
constructs electronically—via mobile 
phones, social media, and electronic health 
records—opens the door for their wide-
spread inclusion in exposome research.

Smartphones can measure stress and 
other emotional states and behaviors 
in real-time. In Ecological Momentary 
Assessment (EMA), people are ran-
domly pinged throughout the day and 
asked questions such as: What’s your 
mood? How stressed are you? Who are 
you talking to? Do you have a crav-
ing for food? Did you overeat? “We 
can characterize people in their natural 
environment in a fresher, closer way to 
their actual experience,” Epel says. 

EMA gives a much richer set of 

EXPOSURES IN OUR BLOOD: Summary of small molecules and metals in human blood. Each curve represents 

the cumulative distribution of chemical concentrations from a particular source. Concentrations of drugs, 

foods, and endogenous chemicals are several orders of magnitude higher than concentrations of pollutants. 

Reprinted from Rappaport SM, Barupal DK, Wishart D, Vineis P, Scalbert A. 2014. The blood exposome and its 

role in discovering causes of disease. Environ Health Perspect 122:769–774.
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data than could be obtained from a few 
questions on a survey. But it also pres-
ents challenges for data analysts. “We’re 
good at collecting masses of data and 
we haven’t caught up to being able to 
use it well and create meaning out of it,” 
Epel says. “We’re in need of data scien-
tists who can manage and make sense of 
these data. It is a hot new area that we 
need to be training more scientists in.”

Others are gathering data from social 
media sites. Sabel uses Twitter to study 
emotions, for example. People’s tweets 
objectively reveal their moods, Sabel 
says. “The idea of mining data from 

Twitter is that it’s like you’re looking at 
them without them knowing that you’re 
listening.” He looks for positive emo-
tions expressed in tweets and links these 
to the locations people are tweeting from 
(from GPS). One drawback with Twitter 
data is that only about two percent of 
Twitter users agree to make their loca-
tion data publicly available, so the sample 
may not be representative, Sabel says. 

Many large epidemiologic surveys 
also include stress-related variables. For 
example, the Health and Retirement 
Study—which has been following 20,000 
older adults in the United States for 
nearly a quarter-century—has periodi-
cally queried participants about socioeco-
nomic stressors, such as unemployment 
and financial hardship. Participants also 
filled out a one-time survey in 2004 that 
asked about their exposure to stressful life 
events—such as divorce, loss, or trauma—
in both childhood and adulthood. Using 
an EWAS approach, Eli Puterman, PhD, 
assistant professor of psychiatry at the 

University of California, San 
Francisco, is asking which of 
92 variables available in the 
Health and Retirement Study 
is most strongly linked to 
mortality. “I think what’s really 
exciting about it is that we’re 
allowing the data to speak for 
themselves,” Puterman says. 

Epel co-leads the Stress 
Measurement Network, a 
consortium that aims to deploy 
more and better measurements 
of stress in large epidemiologic 
studies. In particular, more 
subjective measures of stress 
are needed, Epel says. “You 
cannot know how someone 

is feeling unless you ask them. That’s one 
case where we absolutely need self-report.” 

Beyond epidemiologic studies, elec-
tronic health records (EHRs) offer a huge 
opportunity for exposome researchers. 
“If we had interoperable EHR records 
that had these data in them, we could 
really start to study the exposome,” Adler 
says. She participated in an Institute of 
Medicine panel tasked with recommend-
ing social and behavioral measures for 
inclusion into EHRs. The panel devised 
an 11-item battery that included one or 
two questions each on smoking, physi-
cal activity, education, race/ethnicity, and 
home address, as well as four questions 
on social connection and isolation. 

Getting health care providers to imple-
ment the battery is challenging, but Adler 
notes that doctors are increasingly being 
held accountable for patient outcomes. 
“Once doctors are on the hook for keeping 

people well, they start to pay much more 
attention to the things that really drive their 
health, many of which are social,” she says. 

HOW THE  
DECK IS STACKED:  
GEOGRAPHICAL 

INFORMATION 
SYSTEMS

Many factors that influence our health 
operate at the societal rather than indi-
vidual level: what culture we come from, 
whether we live in poverty, whether we 
have access to health care and high-quality 
education. “There’s a bit of a paradigm 
shift to say behavior is not just an indi-
vidual choice. It’s also constrained by the 
social environment this person is in and 
their financial resources,” Adler says. To 
get at these macro-level factors, expo-
some researchers are using geographical 
information systems. “Geo-coding is really 
opening up possibilities of linking what’s 
going on in neighborhoods and commu-
nities to disease outcomes,” Adler says.

For example, Paul Juarez, PhD, profes-
sor of family and community medicine at 
Meharry Medical College in Nashville, 
Tennessee, uses mapping technology to 
study health disparities. Juarez and his 
team created the Public Health Exposome 
Database, which contains 15,000 data 
points on each of 3,100 counties in the 
U.S.—including data on water and air 
pollution; availability of sidewalks and 
grocery stores; education and poverty; 
local, state, and federal laws pertinent 
to health; and health outcomes. “With 
county level data, you can do some great 
maps and show the hotspots and pat-
terns,” Juarez says. “People understand 
maps better they do spreadsheets.” 

To analyze the data, “we’ve had to go 
out and recruit people who have big data 
skill sets,” Juarez says. For example, he 
collaborates with Michael A. Langston, 
PhD, professor of electrical engineering 
and computer science at the University 
of Tennessee, who uses graph theory to 
analyze big datasets. “We have these tools 
that we’ve built over decades and applied 
to problems that arise in many disciplines. 
We just need to map them over to the 

PERSONAL EXPOSURE MONITORING: This figure shows 

daylong recordings from personal air pollution monitors 

(PM2.5 = particulate matter smaller than 2.5 micro-

grams) for two different people. Colors indicate different 

microenvironments. For example, the person pictured in 

(b) experienced high levels of pollution while traveling 

between home and work (transport periods are in blue). 

Reprinted from S Steinle, S Reis, CE Sabel, et al., Personal 

Esposure Monitoring of PM2.5 in indoor and outdoor 

microenvironments, Science of the Total Environment 

508:383-394 (2015).
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exposome setting rather than redesign-
ing them from scratch,” Langston says.

In graph theory, variables are viewed 
as points in space. Langston’s algorithm 
examines all pairs of variables in the 
dataset; if two variables are highly cor-
related, he’ll put an edge between them. 
“I have all these points and edges floating 
around in space and what our algorithms 
do is find the dense regions—areas where 
there are a whole bunch of edges, meaning 
all these variables are moving together.” 
These dense regions, called paracliques, 
can then be correlated with disease out-
comes. More refined statistical analyses are 
then applied to try to isolate the causative 
factors from the mere confounders. 

In one example, Juarez and Langston 
studied variations in the rates of prema-
ture births across counties. The lowest 
prematurity was found in Marin County, 
California, and the highest in Hinds 
County, Mississippi. They considered 590 
variables, representing indicators from the 
economic, health care, physical, and social 
environments. Of 48 paracliques extracted, 
17 correlated highly with prematurity 
rates. From there, traditional regression 
techniques identified race, obesity and 
diabetes, sexually transmitted disease 
rates, mother’s age, income, marriage rates, 
pollution, and health insurance as key 
drivers of disparities in prematurity rates. 

In another example, Juarez and 
Langston showed that disparities in 
lung cancer mortality for white men and 
women were largely driven by varia-
tions in smoking rates; but, surprisingly, 
disparities in lung cancer mortality for 
black men and women were driven more 
by differences in poverty, overall health, 
and access to health care. “The advantage 
of this data-driven approach is that it 
allows you to see patterns that you may 
not have thought about before with a 
hypothesis-driven approach,” Juarez says. 

The lack of high-quality data manage-
ment tools remains a critical obstacle. 
“The up-front handling of the data is still 
back in the stone ages,” Langston says. 
“Research scientists are going through 
files by hand, trying to move columns 
around,” he says. “We learned in biol-
ogy years ago, if you’re going to deal with 
large volumes of data, then you’ve got to 

bring on board a database administrator 
and a data curator so the domain experts 
can concentrate on the science,” he says.

ASSEMBLING  
THE EXPOSOME

Bit by bit, researchers are making 
inroads into the human exposome. But 
much remains to be done. Besides meeting 
the challenges already detailed, research-
ers also must figure out how to integrate 
all the layers of data—from the chemicals 
in our blood to the laws in our coun-
ties—and also link them to genome data, 
to get at gene-environment interactions. 

The exposome community needs 
to adopt a “big science” approach akin 
to the Human Genome Project, com-
ments Christopher Austin, MD, director 
of the National Center for Advancing 
Translational Sciences at the National 
Institutes of Health. To “kick it up to this 
level,” he advises exposome researchers to 
heed some lessons from the genome com-
munity. For example, he says, the exposome 
community should invest in improving 
measurement technologies, just as the 
Human Genome Project did for sequenc-
ing technologies; establish a public data 

repository similar to GenBank, but for 
exposures; and agree on standards such as 
for variable names, meta-data, and security. 

The key is to make the data easy to 
access and use, Austin says. “Otherwise, 
it becomes what a friend of mine calls 
‘data composting’—you just put it on a 
pile and hope that, if it sits there long 
enough, something magic will happen.” 

On top of all that, Austin says, the 
exposome community needs strong project 
management and leadership. With indi-
vidual-investigator projects, you can make 
things up as you go along, Austin says. 
“The building isn’t that big, so if you need 
to build a foundation halfway through, 

you just do it.” But big science projects 
need to be methodically planned and 
executed or they risk catastrophic collapse. 

Understanding the exposome is an 
ambitious idea, Miller says. But it is far 
from impossible. In the early 1990s, people 
estimated that it would take 130 years to 
sequence the human genome. “But once 
the scientific community said, ‘Okay, we’re 
going to do it, and we’re going to invest 
money in it,’ they were able to rapidly 
accelerate progress and get it done under 
budget and under time,” he says. “It was 
really amazing what happened.” 

HAZARD MAP: This map overlays a person’s GPS-recorded travels with a hazard map showing the concentrations 

of the pollutant nitrogen dioxide (as measured at fixed pollution stations). The map can be used to estimate a 

cumulative daily exposure for the individual. Concentrations of nitrogen dioxide are lowest in light blue areas and 

highest in dark yellow/orange areas. Courtesy of Clive Sabel, Bristol University.
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Zika!Zika!
Computational Biology to the Rescue
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This model 

of Zika virus 

is a part of the 

non-commercial 

educational project 

Viral Park, which was 

launched by Visual Science in 

2009. The model is made at atomic 

resolution, and was published in March 2016 

based on the most up-to-date scientific data and compu-

tational biology simulations available at that time. Reprinted with permission from Visual Science and creator Ivan 

Konstantinov. The original image and animation may be found at http://visual-science.com/projects/zika/3d-model/
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IIn February 2016, scientists around the globe 
turned their attention toward a virus—Zika—
that had suddenly morphed from a minor 
nuisance into something far more sinister. 

They were responding to the World Health 
Organization’s unexpected declaration that Zika had 
become a Public Health Emergency of International 
Concern because of its link with microcephaly—a 
devastating birth defect characterized by abnormal 
brain development and shrunken head size—as 
well as other neurological disorders including the 
progressive paralysis of Guillain-Barré syndrome.

T 
o make matters worse, the particular strain 
of Zika responsible for those problems was 

sweeping across the Americas very quickly. In May 
2015, Brazil confirmed that locally acquired Zika 
was circulating in the country; by August 2016, 
more than 50 additional countries had suffered their 
first outbreaks, with large numbers reporting spikes 
in microcephaly and Guillain-Barré. In the United 
States, meanwhile, clusters of locally transmitted 
Zika erupted in Miami, and infants with birth defects 
possibly tied to the virus began to appear.

The speed with which the epidemic spread, 
however, was matched by the rapidity of the response 
within the scientific community. To a large extent, 
says Alessandro Vespignani, PhD, a computational 
modeler at Northeastern University, that lightning-
fast reaction reflects years of hard work and invest-
ment in computational modeling (including such 
initiatives as MIDAS—Models of Infectious Disease 
Agents, an NIH-funded network of computational 
modelers), as well as grim experience with the H1N1 
pandemic and the West African Ebola epidemic. 
A growing willingness to share results as quickly 
as possible through channels like bioRxiv (biorxiv.
org), a website where scientists post papers before 
they have been published in peer-reviewed journals, 
also meant that modelers and researchers could more 



Perkins’ model, which he first described in a paper posted to bioRxiv less 
than 2 weeks after the WHO declared a public health emergency, predicts 
that 93.4 million people, including 1.65 million childbearing women, could 

be infected before the first wave of the epidemic comes to an end.
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speedily adapt their computational tools 
as new information became available.  

First Approximations
Alex Perkins, PhD, a researcher 

at the University of Notre Dame who 
studies the dynamics of infectious 
disease transmission and control, was 
one of the first modelers to swing into 
action. His goal: to try to quickly predict 

the course of the Zika epidemic and 
the likely number of victims both at 
home and abroad—information that 
governments and public health officials 
could use to plan interventions.

Perkins had for some time been 
contemplating the problem 
of integrating disease data 
collected at different scales. 
On the one hand, richly 
detailed local data related 
to such things as population 
and climate helps researchers 
understand factors affecting 
disease transmission. On the 
other hand, case reports—i.e., 
the number of suspected 
and confirmed cases tallied 
by hospitals—tend to be 
collected at the state- or 
country-wide level.

What, Perkins wondered, 
might be accomplished if the 
first bucket of data could be 
related to the second? And 
how could scientists predict the 
course of an epidemic before 
significant amounts of case 
data had begun to accumulate? 
Could they perhaps anticipate 
the total number of people who 
might be affected in particular 
geographic locales while early 
interventions could still have 
the greatest possible impact?

Zika offered both 
urgent and fertile ground 

for exploring all of those questions. 
Unlike diseases such as Ebola or 

influenza, which are passed directly from 
person to person, Zika is a vector-borne 
disease that is primarily transmitted 
through the bite of the Aedes aegypti 
mosquito, an insect that thrives in the 
tropics and whose range and numbers are 
closely determined by climate. It can also 
be transmitted sexually, and by another 

species of mosquito called Ae. albopictus. 
This makes Zika difficult to model, 

since there is more than one infected 
species to deal with and the chain of 
transmission is complicated (uninfected 
mosquitoes bite infected people, 

acquire the virus, then transmit it to 
uninfected people). But it does provide 
an opportunity to incorporate finely 
grained demographic and climate 
data, including details such as local 
population and birthrate; average daily 
temperatures, which govern where 
and how long the mosquitoes can live 
and, therefore, how many people they 
can infect; and even income levels. 

(Affluent people enjoy air conditioning 
and window screens, which reduce 
exposure to mosquitoes. Poor people do 
not, and are therefore at greater risk.)

In addition, while it was first identified 
more than 60 years ago, Zika remained 

Gridded spatial projections of median infections among childbearing women at 5x5 km resolution across Latin America and the 

Caribbean as a whole (a) and in two specific areas: Cali, Colombia (b) and Recife, Brazil (c). Each grid cell is shaded according to 

the median number of infections for that cell based on 1,000 simulations. Reprinted by permission from Macmillan Publishers Ltd: 

TA Perkins, AS Siraj, CW Ruktanonchai, MUG Kraemer, AJ Tatem, Model-based projections of Zika virus infections in childbearing 

women in the Americas, Nature Microbiology 1, Article 16126 (2016).
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for most of that time a neglected tropical 
disease by reason of its mild symptoms 
(low fever, rash) and lack of known 
complications. Consequently, when the 
World Health Organization (WHO) 
declared a global public health emergency, 
the scientific community confronted a 
disease about which it knew remarkably 
little. Like many, Perkins therefore had 
to rely on data that had already been 
collected for other mosquito-borne 
diseases such as dengue and chikungunya.

Dengue is a member of the same 
family of viruses as Zika, and all three 
illnesses are transmitted by Ae. aegypti. 
So Perkins used some of the basic 
transmission parameters that had already 
been established for dengue, and looked 
to a series of previous chikungunya 
epidemics to get an idea of the total 
number of people who might be infected. 
He then used that information, along 
with mosquito distribution maps and 
the aforementioned local data, to build a 
model that could capture the intersection 
between where people lived, where 
the mosquitoes were likely to be, and 
where the conditions were most suitable 
for transmission—a model that could 
project the number of infections among 
the general population, and among 
pregnant women in particular, across 
Latin America and the Caribbean, 
at a resolution of 5km by 5km.

Perkins is quick to note that his 
model is static rather than dynamic, and 
therefore estimates only how many people 
could become infected and not how long 
that might take. (A less geographically 
precise dynamic model developed by Neil 
Ferguson, PhD, at Imperial College 
London does provide such a timeline, 
predicting, for example, that the current 
epidemic will burn itself out within three 
years.) Moreover, it works best at the level 
of cities, but probably overestimates the 
total count at the country-wide level.

Even with those caveats in mind, 
the numbers are eye-popping: Perkins’ 
model, which he first described in 
a paper posted to bioRxiv less than 
two weeks after the WHO declared 
a public health emergency, predicts 
that 93.4 million people, including 
1.65 million childbearing women, 

could be infected before the first wave 
of the epidemic comes to an end.

Adventures in the 
Fourth Dimension

Perkins himself says that the dynamic 
model developed by Vespignani 
at Northeastern offers the best of 
both worlds: geographically specific 
estimates of how many people could 
be infected, and at what speed.

Ironically, when the NIH-funded 
Center for Inference and Dynamics 
of Infectious Diseases initially invited 
Vespignani, who has previously modeled 
Ebola and the H1N1 virus, to try his 
hand at Zika, his first reaction was an 
emphatic no. The reason: He didn’t want 
to have to deal with the mosquitoes.

Vespignani and his colleagues simulate 
the spread of epidemics across time and 
space using the Global Epidemic and 
Mobility Model (GLEAM), a stochastic 
modeling platform that randomly moves 
simulated populations of individuals 
through a series of epidemiological 
states (susceptible, infected, recovered), 
generating ensembles of possible scenarios 
from which the most likely future path of 
an epidemic can be estimated. It even takes 
into account the way people travel from 
place to place, spreading disease as they go. 

That already adds up to a lot of 
complexity, even for diseases that are 
transmitted directly between people. 
Throw in a couple of vectors like Ae. 
aegypti and Ae. albopictus, which can’t travel 
very far (a typical mosquito only flies an 
average of 400 meters in its lifetime), 
and you suddenly have to simulate a 
whole new population of disease-bearing 
individuals and their movements at a 
very high level of detail—individuals 
whose range and lifespan depend heavily 
on temperature, and may therefore 
change drastically from season to season. 
(Mosquitoes die more quickly in winter 
than in summer, and if their lifespan 
drops below Zika’s incubation period, 
they cannot transmit the virus at all.)

Vespignani initially assumed 
that achieving that level of detail in 
GLEAM would be impossible, and only 
changed his mind when he saw the rich 

mosquito-related data that vector biologists 
at the Centers for Disease Control 
(CDC) and elsewhere had pulled together. 
“It was really a learning experience,” 
he says, adding that having expanded 
GLEAM to accommodate one vector-
borne disease, he and his collaborators 
should now be able to simulate others.

Vespignani and his team took into 
account many of the same factors (e.g., 
mosquito distribution, wealth) that 
Perkins’ model used. Because GLEAM 
is able to simulate the course of an 
epidemic over time, however, Vespignani 
asked somewhat different questions: 
What would the timeline of the Zika 
outbreak look like from place to place? 
What would its impact look like at 
specific points in time? And when, exactly, 
did the virus first arrive in Brazil?

For a modeler, that last question 
is important, since the reliability of a 
model’s projections depends on its ability 
to reconstruct the past. “You must get 
the past right in order to get the future 

right,” Vespignani says. He was therefore 
reassured when GLEAM determined 
that Zika was most likely introduced 
to Brazil in 2013, a finding that agreed 
with the results of phylogenetic and 
molecular clock analyses performed 
by Oliver Pybus, PhD, of Oxford 
University, and colleagues in Brazil.

Yet even with a well-calibrated model, 
forecasting the course of the epidemic 
was not straightforward. Like Perkins, for 
example, Vespignani had to cadge some of 
his transmission parameters from dengue, 
introducing a degree of uncertainty 
into his calculations. Because Zika is 

 GLEAM [the approach 
used by Vespignani’s team] 

consistently predicted a 
slow-moving epidemic 

that would manifest 
in multiple waves in 

some places (Honduras, 
Mexico, Puerto Rico) due 

to seasonal effects.
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passed from humans to mosquitoes and 
back again, there is also some fuzziness 
surrounding the serial interval, or the 
time between one infection and the next. 
And no one really knows how much of a 
role Ae. albopictus plays in spreading the 
disease. As a result, Vespignani performed 
several rounds of sensitivity analysis, 
essentially playing with small variations in 

parameters —changing the serial interval, 
for example, or removing Ae. albopictus 
from the picture altogether—to see if the 
model would break down. (The various 
scenarios can be seen at zika-model.org.)

It didn’t. Instead, GLEAM consistently 
predicted a slow-moving epidemic 
that would manifest in multiple waves 
in some places (Honduras, Mexico, 
Puerto Rico) due to seasonal effects.

Vespignani and his team are currently 
projecting the total possible number 

of infections across the U.S. on a state-
by-state basis, a task that requires 
performing millions of simulations on 
30,000 processors on a cloud computing 
platform. Their efforts generated headlines 
when GLEAM estimated that there 
could be 25 times the number of travel-
related cases reported by the CDC, 
but Vespignani says that wasn’t really 

surprising: Only 20 percent of infected 
people show symptoms, and those tend 
to be so mild that Vespignani himself 
doubts that he would go to the hospital 
if he had them. More reassuringly, the 
model predicts that this country will only 
see relatively small outbreaks of the sort 
that have already occurred in Florida.

A Quick and Easy Test
Anticipating the course of an 

epidemic is one thing; dealing with it 

on the ground through diagnosis and 
treatment is another. Yet here, too, 
computation is playing an important role.

Standard diagnostic methods such 
as antibody detection aren’t ideal for 
Zika because false positives can arise 
among people who have previously 
been infected by a related virus such as 
dengue. But the cost and complexity 

of more accurate methods 
such as DNA or RNA 
detection puts them beyond 
the reach of basic health 
clinics in poor, remote areas.

Now, however, a team 
of scientists assembled by 
James J. Collins, PhD, of 
MIT and Harvard’s Wyss 
Institute, is changing that. 
Together, they have created 
a cheap, quick, and highly 
sensitive RNA test that could 
be used practically anywhere.

Originally developed to 
detect Ebola, the test relies 
on two pieces of technology: 
programmable RNA sensors 
called toehold switches that 
can be designed to detect 
virtually any RNA sequence; 
and a freeze-dried, paper-
based platform that allows 
those toehold switches to be 
stored at room temperature on 
little paper discs, and activated 
simply by adding a bit of blood 
plasma and some water.

The switches are made of synthetic 
strands of RNA that encode a reporter 
protein that can make the paper change 
color from yellow to purple. But the 
switches also contain a hairpin structure 
called a stem that physically prevents the 
RNA from being translated unless the 
stem itself is unwound. In an ingenious 
twist, the switches are also configured to 
be perfectly complementary to specific 
target sequences of RNA. Only when 
the switches encounter their targets do 
their stems unwind, allowing the reporter 
protein to be produced and causing the 
paper to change color. Diagnosis: positive.

Alexander Green, PhD, who 
developed the switches as a postdoctoral 
fellow at the Wyss and is now on faculty 

Monthly seasonality for the time- and location-dependent basic reproduction number—the number of people 

that each infected individual is expected to infect.  The Equatorial region presents less seasonality than the 

non-Equatorial regions, where the changes of the season have a strong impact over the temperature and 

consequently over the basic reproduction number. Reprinted from Q Zhang, K Sun, M Chinazzi, et al., Projected 

spread of Zika virus in the Americas, http://dx.doi.org/10.1101/066456.  
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at Arizona State University, explains that 
computation is involved at several levels.

For one thing, in order for the sensors 
to detect the minute quantities of Zika 

RNA present in the blood of an infected 
person, those target sequences must first 
be amplified. Yet amplification itself 
makes use of short nucleotide sequences 
called primers, and if those aren’t chosen 
wisely, trouble may ensue. 
If the primers aren’t specific 
enough, for instance, they 
may also amplify other, 
similar sequences, like those 
belonging to dengue.

For another, not all RNA 
sequences are equally well-
suited to detection by toehold 
switches. When a switch meets 
its target, the two strands of 
RNA intertwine, their bases 
binding to one another; and 
that interaction can interfere 
with the performance of the 
switch itself. Not all switches 
are equally sturdy, either; 
and if the stem is too weak, 
it might unwind even in the 
absence of target RNA.

Green and his colleagues 
therefore used several different 
algorithms and software 
tools—some custom-built, 
others open-source—to 
rationalize both primer 
selection and switch design. 

First, they used their toolkit 
to screen the Zika genome for 
regions that were compatible 
with RNA amplification, 
filtering out those that were 
too similar to closely related 

viruses such as dengue or to human RNA. 
With a list of candidate target sequences 
in hand, they then simulated every 
toehold switch that could conceivably 

bind to those potential 
targets, and evaluated which 
combinations of primer and 
switch would work best.

It took less than a day 
to construct and test the 
computationally optimized 
switches, which were sensitive 
enough to detect Zika in 
blood plasma samples and 
specific enough not to be 
fooled by dengue. And 
manufacturing a disk of freeze-

dried paper loaded with switches and 
amplification materials costs only a dollar.

Greene and his colleagues hope to 
make the test even quicker and less 
expensive. They also plan to validate 

their system using human samples, 
and to extend its range so that it can 
detect other pathogens as well.

Mapping the  
Mechanisms of Disease

Of course, once you’ve diagnosed 
a disease, the next step is treating it. 
Which is why researchers are also 
trying to understand exactly how 
Zika causes microcephaly and other 
neurological disorders, and are working 
to find drugs that can fight it.

Yi Ren, PhD, a cell biologist at 
Florida State University who studies 
inflammation, is one of those trying 
to get a handle on how Zika does its 
damage. Her FSU colleague Hengli 
Tang, PhD, was among the first 
to explain how Zika could cause 
microcephaly in fetuses—namely, by 

When human neural stem cells are infected with the Zika virus, certain genes are over- and under-expressed compared with 

normal cells. This visual map shows the various networks of biological processes and immune system responses related to those 

over- and under-expressed genes. These networks were generated using the Gene Ontology (GO) database and the open-source 

software platform Cytoscape. Circles represent biological processes (e.g., metabolic processes) in the Gene Ontology database, 

while triangles represent immune system responses. Groupings with less than three connections were excluded from the final 

list of networks. Reprinted from AJ Rolfe, DB Bosco, J Wang et al., Bioinformatic analysis reveals the expression of unique tran-

scriptomic signatures in Zika virus infected human neural stem cells, Cell & Bioscience 6:42 (2016).

 A team of scientists assembled 
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and highly sensitive RNA test 

[of Zika infection] that could be 
used practically anywhere.
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disrupting cell division and causing 
death among the neural progenitor cells 
that give rise to the various components 
of the nervous system—and Ren, in 
turn, wondered what inflammatory 
pathways the virus might activate.

Alyssa Rolfe, a PhD student in Ren’s 
lab, explains that she and her colleagues 
used a variety of bioinformatic tools to 
analyze the RNA sequence data from 
Tang’s Zika-infected human neural 
progenitor cells (hNPCs) in order 
to learn more about how the virus 
does its dirty work—and to suggest 
potential strategies for thwarting it.

After assembling a list of all of the 
genes that were either over-expressed or 
under-expressed in Tang’s Zika-infected 
cells, the team used the Gene Ontology 
database to figure out which basic 
cellular functions those differentially 
expressed genes might be affecting. 
They also compared their list with 
the genes associated with six different 
neurological diseases in MalaCards, a 
searchable database of human diseases 
and disorders; and used an open-source 
software platform called Cytoscape to 
create a visual map of all the networks 
of intracellular biological processes and 
immune system responses associated 
with the up- and down-regulated 
genes. They even compared the gene 
expression profile of the Zika-infected 
cells to the profile of hNPCs that 
were infected with cytomegalovirus 
(CMV), which can cause a battery of 
birth defects including microcephaly.

The results were intriguing and, 
at times, unexpected. For example, 
the MalaCards search indicated that 
the pattern of gene expression in 
the Zika-infected cells had more in 
common with a suite of congenital 
nervous system disorders than it did 
with Guillain-Barré syndrome. And 
there was little correlation between the 
immune response pathways that were 
up- or down-regulated in the Zika-
infected cells and their CMV-infected 
counterparts, suggesting that while the 
two viruses can cause comparable birth 
defects, they do so through different 
mechanisms. Moreover, four of the eight 
networks the team identified through 

visual mapping were associated with 
immune responses—a surprise, says 
Rolfe, since one wouldn’t expect hNPCs 
to have any significant interaction 
with the immune system at all. 

The real shocker, however, came when 
the team dug deeper into the immune 
and inflammatory pathways associated 
with their list of genes. Rolfe and her 
colleagues discovered that a number of 
genes that one would only expect to see 
expressed in various kinds of immune 
cells, such as T-cells and dendritic cells, 
were in fact over- and under-expressed 
in the infected neural progenitor cells. 
“You wouldn’t think those genes would 
have any function in hNPCs,” Rolfe says.

It’s possible, she explains, that Zika is 
either pushing those cells to differentiate 
into some unknown state; or that the 
virus is somehow encouraging hNPCs, 
which do have an innate capacity to 
modify or regulate immune functions—
producing proteins called cytokines, 
for instance, that normally promote 
healthy neural development—to shift 
from an anti-inflammatory role to a pro-
inflammatory one. The second possibility, 
in particular, raises the question of what 
that shift might do to a developing 
fetus, and whether moderating the 
resulting inflammation might limit the 
negative consequences of infection.

Rolfe says that further investigation in a 
wet lab will be necessary to sort all of that 
out. But she hopes that the bioinformatic 
analysis she and her colleagues have 
already done will give other researchers 
useful clues for mitigating Zika’s impact.

Going Viral on the Grid
While Rolfe and the rest of Ren’s 

team are probing for insights that could 
lead to fresh strategies for fighting Zika 
and its terrible effects, the researchers 
behind OpenZika (openzika.ufg.br) are 
using computation to virtually screen 
millions of existing compounds for 
ones that might already do the trick. 
The idea, explains Joel S. Freundlich, 
PhD, a chemist at Rutgers New Jersey 
Medical School who is collaborating on 
the project, is to jumpstart drug discovery 
by computationally whittling down the 
massive list of possible drug candidates 

to a more manageable set of likely 
prospects that can be tested in the lab.

Given the numbers involved, that 
winnowing process is important. 
Alexander L. Perryman, PhD, a 
co-principal investigator on the project 
who works as a senior researcher in 
Freundlich’s lab, points out that even 
using high-throughput methods, most 
laboratories can only screen a couple 
thousand to a few hundred thousand 
compounds at a go, with Big Pharma 
pumping that number up to “a couple 
of million.” The OpenZika team, on the 
other hand, is screening 8000 FDA- 
and EU-approved drugs and NIH 
drug candidates, plus another 6 million 
compounds pooled from various sources 
to see if any are likely to disable or kill 
the Zika virus, with an additional 38 
million compounds waiting in the wings.

OpenZika performs virtual 
experiments known as docking 
calculations that predict how small, drug-
like molecules will bind and interact with 
the proteins that scientists suspect allow 
Zika to infect its victims and replicate 
inside them. And it does so on IBM’s 
World Community Grid (WCG), which 
draws its computational horsepower 
from more than 700,000 volunteers in 
80 countries who donate processing time 
on their idle computers, smart phones, 
and tablets, creating what Perryman calls 
“one of the largest supercomputers on the 
planet.” (Perryman previously used WCG 
to drive computational drug discovery 
projects for malaria and HIV/AIDS.)

The team employs a program called 
AutoDock Vina to predict the inter-
actions between the small molecules 
in its compound libraries and vari-
ous Zika proteins, virtually “docking” 
flexible 3-D atomic-scale models of 
the former to the latter in hopes of 
identifying molecules that can inhibit 
the virus’s ability to function. 

Each virtual experiment, or docking 
job, calculates the interactions between 
a single binding site on one protein, 
and one small molecule that is placed 
in a variety of positions, conformations, 
and orientations. That adds up to a 
lot of calculations. But WCG can 
handle it: Whereas most researchers 
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who use supercomputers measure their 
allotted processing time in thousands 
of CPU hours, the OpenZika team 
counts its share in thousands of CPU 
years. Within the first three months of 
the project, Perryman had submitted 
approximately 900 million docking 
jobs and received 439 million results.

Because no one had bothered to 
determine the physical structure of the 
various components of the Zika virus 
before the current epidemic began, 
Perryman and his colleagues initially had 
to rely on speculative 3-D computational 
renderings, or homology models, of 
the Zika proteins that various team 
members created using the Zika genome 
and structural data gleaned from related 

viruses such as dengue and yellow fever. 
As scientists began to generate structures 
for the Zika proteins themselves, the 
OpenZika researchers incorporated those 
as well; but they continue to use data 
from related viruses in part because they 
hope to find broad-spectrum antivirals 
that will work against more than one.

The software scores the performance 
of each compound, estimating the 
likelihood that it will stop Zika in its 
tracks. After that, the humans step 
in, visually inspecting the highest-
scoring compounds to determine which 
might be the best drug candidates. Of 
the 8,000 drugs and drug candidates 
that have been screened against one 
particularly promising target, for 

example, AutoDock Vina thinned the 
herd to 160; Perryman trimmed it to 
15; and Freundlich and Ekins used 
their chemical expertise to eliminate 
all but 8. (Eventually, they plan to use 
Bayesian machine-learning algorithms 
to do more of that filtering for them.) 

Of those, five will be sent to 

collaborators at the University of 
California, San Diego, who will run 
cell-based experiments to see if the 
compounds really are as good as they 
seem. If they are, the medicinal chemists 
on the team will try to determine 
what makes them effective so that 
they can be made even more potent, 
even as the team continues to screen 
its compound libraries against yet 
another target in order to identify more 
prospects for lab testing. The goal is 
to get the most promising candidates 
into the lab and back out the door in 
enhanced form as quickly as possible. 

Forecasting. Diagnosis. Basic 
biology and drug discovery. All have 
a role to play in dealing with what is 
shaping up to be one of the greatest 
global public health crises in recent 
times. And computation, in turn, is 
playing a key role in all of them. 

The OpenZika team used freely available online software 

to create a homology model of the ZIKV envelope protein 

(A) that could then be used to dock compounds (such as 

pyronaridine, shown docked in B and C) and score them 

in order to prioritize compounds for in vitro testing. 

Reprinted from S Ekins, D Mietchen, M Coffee, et al. Open 

drug discovery for the Zika virus. F1000Research 2016, 

5:150 (doi: 10.12688/f1000research.8013.1)
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Seeing Science

ANIMATING HYPOTHESES

In addition to illustrating complex biological molecules, 
animations can sometimes offer insight into how those 
molecules function.   

That’s what happened when Grant Jensen, PhD, professor 
of biophysics and biology at Caltech, and Yi-Wei Chang, PhD, 
a research scientist at Caltech, decided to animate their model 
of the strongest known molecular motor—the bacterial type IVa 
pilus machine. This motor resides in the cell membranes of many 
bacteria, including several that cause human diseases such as 

meningitis and gonorrhea. It extends and retracts a filament (the 
pilus) that pulls the bacteria forward. Jensen and Chang knew the 
components of the machine, but not the details of how it worked. 
So they used cryotomography to image the machine and assemble 
a pseudoatomic model. 

When they enlisted Janet Iwasa, PhD, research assistant profes-
sor of biochemistry at the University of Utah, to animate the struc-
ture, Jensen and Chang had a pretty good idea of how the machine 
worked and even storyboarded most of it. But the animation took 
them further. “It made us think about the details more carefully than 
we had,” Jensen says. In fact, the animation revealed that the cage at 
the base of the machine was too tight for pilin monomers to enter. 
“That led us to hypothesize that there must be a conformational 
change that occurs there when pilus assembly starts,” Jensen says. 

“Molecular animations are not just entertaining visual candy,” 
Jensen says. “They are by far the fastest and clearest way to com-
municate complex hypotheses to a broad audience, and they force 
us all to think in even greater depth about what might be happen-
ing inside cells. Beyond pictures, animations are worth even more 
than a thousand words.” 

BY KATHARINE MILLER

In Iwasa’s animation of the type IVa pilus machine, the ATP-powered assembly 

mechanism in the inner membrane causes the blue birdcage area to open up, allowing 

the entry of pilin subunits. The hypothesis is that the protein shown in yellow here 

binds the subunits and rotates, adding them to the growing pilus as it extends. During 

retraction, a different ATP-ase steps in and the process reverses itself. The animation 

is posted at http://jensenlab.caltech.edu/movies/. Reprinted from YW Chang, LA 

Rettberg, A Treuner-Lange, J Iwasa, L Søgaard-Andersen, GJ Jensen, Architecture of 

the type IVa pilus machine, Science 351:6278 (2016) with permission from AAAS.


